The sol-gel route represents a valuable technique to obtain functional materials, in which organic and inorganic members are closely connected. Herein, four hybrid materials, containing caffeic acid entrapped in a silica matrix at 5, 10, 15, and 20 wt.%, were synthesized and characterized through Fourier-Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR analysis was also performed to evaluate the ability to induce the hydroxyapatite nucleation. Despite some structural changes occurring on the phenol molecular skeleton, hybrid materials showed scavenging properties vs. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,20-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) radical cation (ABTS·+), which was dependent on the tested dose and on the caffeic acid wt.%. The SiO2/caffeic acid materials are proposed as valuable antibacterial agents against Escherichia coli and Enterococcus faecalis.

New SiO2/Caffeic acid hybrid materials: Synthesis, spectroscopic characterization, and bioactivity

Catauro M.
;
Piccolella S.;Pacifico S.
2020

Abstract

The sol-gel route represents a valuable technique to obtain functional materials, in which organic and inorganic members are closely connected. Herein, four hybrid materials, containing caffeic acid entrapped in a silica matrix at 5, 10, 15, and 20 wt.%, were synthesized and characterized through Fourier-Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR analysis was also performed to evaluate the ability to induce the hydroxyapatite nucleation. Despite some structural changes occurring on the phenol molecular skeleton, hybrid materials showed scavenging properties vs. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,20-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) radical cation (ABTS·+), which was dependent on the tested dose and on the caffeic acid wt.%. The SiO2/caffeic acid materials are proposed as valuable antibacterial agents against Escherichia coli and Enterococcus faecalis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/427105
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact