No study has investigated the interaction of Resolvin D1 (RvD1) with mitochondrial damage of retinal cells caused by diabetes. This study aims to investigate the effects of RvD1 (50 nM) on morphological and biochemical indicators of mitochondrial damage in primary retinal cells exposed to 30 mM d-glucose high glucose (HG). HG-cells exhibited photoreceptor damage characterized by short and small mitochondria with prevalent mitochondrial disruption, fragmentation, and aggregation. The cells had low mitochondrial transporters TIMM44 and TOMM40, Connexin 43, NAD/NADH ratio, and ATP levels, whereas increased cytosolic cytochrome c. Moreover, they expressed high cytosolic metalloproteinase matrix metallopeptidase 9 (MMP-9) and MMP-2 activity. HG-cells treated with RvD1 (50 nM) showed reduced reactive oxygen species levels, improved mitochondrial morphology and function, promoted mitochondrial DNA repair by OGG1, and reduced cell apoptosis and metalloproteinase activity. Therefore, RvD1 induces protection from high glucose-load to the retinal cell and promotes their survival by decreasing cytosolic MMP and mitochondrial damage.

No study has investigated the interaction of Resolvin D1 (RvD1) with mitochondrial damage of retinal cells caused by diabetes. This study aims to investigate the effects of RvD1 (50 nM) on morphological and biochemical indicators of mitochondrial damage in primary retinal cells exposed to 30 mM d-glucose high glucose (HG). HG-cells exhibited photoreceptor damage characterized by short and small mitochondria with prevalent mitochondrial disruption, fragmentation, and aggregation. The cells had low mitochondrial transporters TIMM44 and TOMM40, Connexin 43, NAD/NADH ratio, and ATP levels, whereas increased cytosolic cytochrome c. Moreover, they expressed high cytosolic metalloproteinase matrix metallopeptidase 9 (MMP-9) and MMP-2 activity. HG-cells treated with RvD1 (50 nM) showed reduced reactive oxygen species levels, improved mitochondrial morphology and function, promoted mitochondrial DNA repair by OGG1, and reduced cell apoptosis and metalloproteinase activity. Therefore, RvD1 induces protection from high glucose-load to the retinal cell and promotes their survival by decreasing cytosolic MMP and mitochondrial damage.

Resolvin D1 reduces mitochondrial damage to photoreceptors of primary retinal cells exposed to high glucose

Trotta, Maria Consiglia;Pieretti, Gorizio;Alessio, Nicola;D'Amico, Michele
2019

Abstract

No study has investigated the interaction of Resolvin D1 (RvD1) with mitochondrial damage of retinal cells caused by diabetes. This study aims to investigate the effects of RvD1 (50 nM) on morphological and biochemical indicators of mitochondrial damage in primary retinal cells exposed to 30 mM d-glucose high glucose (HG). HG-cells exhibited photoreceptor damage characterized by short and small mitochondria with prevalent mitochondrial disruption, fragmentation, and aggregation. The cells had low mitochondrial transporters TIMM44 and TOMM40, Connexin 43, NAD/NADH ratio, and ATP levels, whereas increased cytosolic cytochrome c. Moreover, they expressed high cytosolic metalloproteinase matrix metallopeptidase 9 (MMP-9) and MMP-2 activity. HG-cells treated with RvD1 (50 nM) showed reduced reactive oxygen species levels, improved mitochondrial morphology and function, promoted mitochondrial DNA repair by OGG1, and reduced cell apoptosis and metalloproteinase activity. Therefore, RvD1 induces protection from high glucose-load to the retinal cell and promotes their survival by decreasing cytosolic MMP and mitochondrial damage.
2019
No study has investigated the interaction of Resolvin D1 (RvD1) with mitochondrial damage of retinal cells caused by diabetes. This study aims to investigate the effects of RvD1 (50 nM) on morphological and biochemical indicators of mitochondrial damage in primary retinal cells exposed to 30 mM d-glucose high glucose (HG). HG-cells exhibited photoreceptor damage characterized by short and small mitochondria with prevalent mitochondrial disruption, fragmentation, and aggregation. The cells had low mitochondrial transporters TIMM44 and TOMM40, Connexin 43, NAD/NADH ratio, and ATP levels, whereas increased cytosolic cytochrome c. Moreover, they expressed high cytosolic metalloproteinase matrix metallopeptidase 9 (MMP-9) and MMP-2 activity. HG-cells treated with RvD1 (50 nM) showed reduced reactive oxygen species levels, improved mitochondrial morphology and function, promoted mitochondrial DNA repair by OGG1, and reduced cell apoptosis and metalloproteinase activity. Therefore, RvD1 induces protection from high glucose-load to the retinal cell and promotes their survival by decreasing cytosolic MMP and mitochondrial damage.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/416910
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact