For Kummer extensions defined by ym=f(x), where f(x) is a separable polynomial over the finite field Fq, we compute the number of Weierstrass gaps at two totally ramified places. For many totally ramified places we give a criterion to find pure gaps at these points and present families of pure gaps. We then apply our results to construct n-points algebraic geometric codes with good parameters.

Algebraic geometric codes on many points from Kummer extensions

Zini G.
2018

Abstract

For Kummer extensions defined by ym=f(x), where f(x) is a separable polynomial over the finite field Fq, we compute the number of Weierstrass gaps at two totally ramified places. For many totally ramified places we give a criterion to find pure gaps at these points and present families of pure gaps. We then apply our results to construct n-points algebraic geometric codes with good parameters.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/415207
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact