D-Aspartate (D-Asp) is an endogenous amino acid that plays a central role in the development of the central nervous system (CNS) and functioning of the neuroendocrine system. In line with its functions, it is abundantly present in the CNS and reproductive systems of vertebrates and invertebrates. It has been implicated in the biosynthesis and/or secretion of hormones and factors that are involved in various reproductive functions, such as GnRH from the hypothalamus and testosterone from the testis. We conducted an in vivo study consisting of acute (i.p. injection of 2 μmol/g body weight) and chronic (15 days drinking solution) administration of D-Asp to adult rats to understand the signaling pathways elicited by D-Asp in the rat testis. We found that D-Asp upregulated the expression of prolyl endopeptidase (PREP), a serine protease having a pivotal role in the regulation of mammalian spermatogenesis and spermiogenesis. Immunofluorescence analysis revealed its overexpression in Leydig cells, Sertoli cells and spermatogonia. Moreover, PREP was found to co-localize with GluA2/3, an AMPA receptor subunit, whose protein expression also increased after D-Asp treatments. Finally, we found a significant increase in ERK and Akt activities in the testis of rats treated with D-Asp. Since PREP is known to be involved in regulating GnRH levels and in germ cell differentiation, we hypothesize D-Asp to play a pivotal role in regulating hormone homeostasis and spermatogenesis through activation of PREP, AMPAR, ERK and Akt.

D-Aspartate (D-Asp) is an endogenous amino acid that plays a central role in the development of the central nervous system (CNS) and functioning of the neuroendocrine system. In line with its functions, it is abundantly present in the CNS and reproductive systems of vertebrates and invertebrates. It has been implicated in the biosynthesis and/or secretion of hormones and factors that are involved in various reproductive functions, such as GnRH from the hypothalamus and testosterone from the testis. We conducted an in vivo study consisting of acute (i.p. injection of 2 µmol/g body weight) and chronic (15 days drinking solution) administration of D-Asp to adult rats to understand the signaling pathways elicited by D-Asp in the rat testis. We found that D-Asp upregulated the expression of prolyl endopeptidase (PREP), a serine protease having a pivotal role in the regulation of mammalian spermatogenesis and spermiogenesis. Immunofluorescence analysis revealed its overexpression in Leydig cells, Sertoli cells and spermatogonia. Moreover, PREP was found to co-localize with GluA2/3, an AMPA receptor subunit, whose protein expression also increased after D-Asp treatments. Finally, we found a significant increase in ERK and Akt activities in the testis of rats treated with D-Asp. Since PREP is known to be involved in regulating GnRH levels and in germ cell differentiation, we hypothesize D-Asp to play a pivotal role in regulating hormone homeostasis and spermatogenesis through activation of PREP, AMPAR, ERK and Akt.

D-ASP upregulates PREP and GluA2/3 expressions and induces p-ERK1/2 and p-Akt in rat testis

Santillo, Alessandra;Venditti, Massimo;Minucci, Sergio;Chieffi Baccari, Gabriella;Di Fiore, Maria Maddalena
2019

Abstract

D-Aspartate (D-Asp) is an endogenous amino acid that plays a central role in the development of the central nervous system (CNS) and functioning of the neuroendocrine system. In line with its functions, it is abundantly present in the CNS and reproductive systems of vertebrates and invertebrates. It has been implicated in the biosynthesis and/or secretion of hormones and factors that are involved in various reproductive functions, such as GnRH from the hypothalamus and testosterone from the testis. We conducted an in vivo study consisting of acute (i.p. injection of 2 µmol/g body weight) and chronic (15 days drinking solution) administration of D-Asp to adult rats to understand the signaling pathways elicited by D-Asp in the rat testis. We found that D-Asp upregulated the expression of prolyl endopeptidase (PREP), a serine protease having a pivotal role in the regulation of mammalian spermatogenesis and spermiogenesis. Immunofluorescence analysis revealed its overexpression in Leydig cells, Sertoli cells and spermatogonia. Moreover, PREP was found to co-localize with GluA2/3, an AMPA receptor subunit, whose protein expression also increased after D-Asp treatments. Finally, we found a significant increase in ERK and Akt activities in the testis of rats treated with D-Asp. Since PREP is known to be involved in regulating GnRH levels and in germ cell differentiation, we hypothesize D-Asp to play a pivotal role in regulating hormone homeostasis and spermatogenesis through activation of PREP, AMPAR, ERK and Akt.
2019
D-Aspartate (D-Asp) is an endogenous amino acid that plays a central role in the development of the central nervous system (CNS) and functioning of the neuroendocrine system. In line with its functions, it is abundantly present in the CNS and reproductive systems of vertebrates and invertebrates. It has been implicated in the biosynthesis and/or secretion of hormones and factors that are involved in various reproductive functions, such as GnRH from the hypothalamus and testosterone from the testis. We conducted an in vivo study consisting of acute (i.p. injection of 2 μmol/g body weight) and chronic (15 days drinking solution) administration of D-Asp to adult rats to understand the signaling pathways elicited by D-Asp in the rat testis. We found that D-Asp upregulated the expression of prolyl endopeptidase (PREP), a serine protease having a pivotal role in the regulation of mammalian spermatogenesis and spermiogenesis. Immunofluorescence analysis revealed its overexpression in Leydig cells, Sertoli cells and spermatogonia. Moreover, PREP was found to co-localize with GluA2/3, an AMPA receptor subunit, whose protein expression also increased after D-Asp treatments. Finally, we found a significant increase in ERK and Akt activities in the testis of rats treated with D-Asp. Since PREP is known to be involved in regulating GnRH levels and in germ cell differentiation, we hypothesize D-Asp to play a pivotal role in regulating hormone homeostasis and spermatogenesis through activation of PREP, AMPAR, ERK and Akt.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/414653
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact