Sik1 (salt inducible kinase 1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMP-activated protein kinase family. During murine embryogenesis, sik1 marks the monolayer of future myocardial cells that will populate first the primitive ventricle, and later the primitive atrium suggesting its involvement in cardiac cell differentiation and/or heart development. Despite that observation, the involvement of sik1 in cardiac differentiation is still unknown. We examined the sik1 function during cardiomyocyte differentiation using the ES-derived embryoid bodies. We produced a null embryonic stem cell using a gene-trap cell line carrying an insertion in the sik1 locus. In absence of the sik1 protein, the temporal appearance of cardiomyocytes is delayed. Expression profile analysis revealed sik1 as part of a genetic network that controls the cell cycle, where the cyclin-dependent kinase inhibitor p57(Kip2) is directly involved. Collectively, we provided evidence that sik1-mediated effects are specific for cardiomyogenesis regulating cardiomyoblast cell cycle exit toward terminal differentiation.

Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2

Cobellis, Gilda
Supervision
2010

Abstract

Sik1 (salt inducible kinase 1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMP-activated protein kinase family. During murine embryogenesis, sik1 marks the monolayer of future myocardial cells that will populate first the primitive ventricle, and later the primitive atrium suggesting its involvement in cardiac cell differentiation and/or heart development. Despite that observation, the involvement of sik1 in cardiac differentiation is still unknown. We examined the sik1 function during cardiomyocyte differentiation using the ES-derived embryoid bodies. We produced a null embryonic stem cell using a gene-trap cell line carrying an insertion in the sik1 locus. In absence of the sik1 protein, the temporal appearance of cardiomyocytes is delayed. Expression profile analysis revealed sik1 as part of a genetic network that controls the cell cycle, where the cyclin-dependent kinase inhibitor p57(Kip2) is directly involved. Collectively, we provided evidence that sik1-mediated effects are specific for cardiomyogenesis regulating cardiomyoblast cell cycle exit toward terminal differentiation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/407176
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact