The application of mycorrhizal fungi in agricultural soils as bio-fertilizers is going to be established as an agronomic practice for enhancing crop nutrients acquisition and production. In this work, the effects of tomato root colonization by arbuscular mycorrhizal fungus Glomus mosseae, on nitrogen metabolism, fructification and environmental sustainability without P soil fertilization have been studied. At the harvesting fruit stage, the mycorrhizal (M) plants present a significantly higher concentration of mineral nutrients and organic nitrogen compounds. In particular, GLU, GLN, ASP and ASN have risen about 35% more than non-mycorrhizal (NM) plants. Tomato root mycorrhization improved nitrogen metabolism in plants, too by increasing the nitrate reductase and the glutamine synthetase enzymatic activity. Moreover, mycorrhization affects many aspects of vegetative and reproductive growth. In particular, the fruit production turns from inoculated (M) plants into non-inoculated (NM) plants, rising up to 50%.

Influence of Tomato Plant Mycorrhization on Nitrogen Metabolism, Growth and Fructification on P-Limited Soil

Antonietta Fioretto;
2019

Abstract

The application of mycorrhizal fungi in agricultural soils as bio-fertilizers is going to be established as an agronomic practice for enhancing crop nutrients acquisition and production. In this work, the effects of tomato root colonization by arbuscular mycorrhizal fungus Glomus mosseae, on nitrogen metabolism, fructification and environmental sustainability without P soil fertilization have been studied. At the harvesting fruit stage, the mycorrhizal (M) plants present a significantly higher concentration of mineral nutrients and organic nitrogen compounds. In particular, GLU, GLN, ASP and ASN have risen about 35% more than non-mycorrhizal (NM) plants. Tomato root mycorrhization improved nitrogen metabolism in plants, too by increasing the nitrate reductase and the glutamine synthetase enzymatic activity. Moreover, mycorrhization affects many aspects of vegetative and reproductive growth. In particular, the fruit production turns from inoculated (M) plants into non-inoculated (NM) plants, rising up to 50%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/404808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact