Let Γ be the first Grigorchuk group‎. ‎According to a result of Bartholdi‎, ‎the only left Engel elements of Γ are the involutions‎. ‎This implies that the set of left Engel elements of Γ is not a subgroup‎. ‎The natural question arises whether this is also the case for the sets of bounded left Engel elements‎, ‎right Engel elements and bounded right Engel elements of Γ‎. ‎Motivated by this‎, ‎we prove that these three subsets of Γ coincide with the identity subgroup‎.

A note on Engel elements in the first Grigorchuk group

TORTORA, Antonio
2019

Abstract

Let Γ be the first Grigorchuk group‎. ‎According to a result of Bartholdi‎, ‎the only left Engel elements of Γ are the involutions‎. ‎This implies that the set of left Engel elements of Γ is not a subgroup‎. ‎The natural question arises whether this is also the case for the sets of bounded left Engel elements‎, ‎right Engel elements and bounded right Engel elements of Γ‎. ‎Motivated by this‎, ‎we prove that these three subsets of Γ coincide with the identity subgroup‎.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/402856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact