A relevant challenge introduced by decentralized installations of photo-voltaic systems is the mismatch between green energy production and the load curve for domestic use. We advanced an ICT solution that maximizes the self-consumption by an intelligent scheduling of appliances. The predictive approach is complemented with a reactive one to minimize the short term effects due to prediction errors and to unforeseen loads. Using real measures, we demonstrated that such errors can be compensated modulating the usage of continuously running devices such as fridges and heat-pumps. Linear programming is used to dynamically compute in real-Time the optimal control of these devices.

Improving self-consumption of green energy using linear programming for reactive control of smart devices

Amato, Alba;Venticinque, Salvatore
2018

Abstract

A relevant challenge introduced by decentralized installations of photo-voltaic systems is the mismatch between green energy production and the load curve for domestic use. We advanced an ICT solution that maximizes the self-consumption by an intelligent scheduling of appliances. The predictive approach is complemented with a reactive one to minimize the short term effects due to prediction errors and to unforeseen loads. Using real measures, we demonstrated that such errors can be compensated modulating the usage of continuously running devices such as fridges and heat-pumps. Linear programming is used to dynamically compute in real-Time the optimal control of these devices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/402732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact