The high-spin structures of Ba136 and Ba137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Ba136 is populated in a Xe136+U238 MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two Be9+Te130 fusion-evaporation reactions using the High-efficiency Observatory for γ-Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are populated in an elusive reaction channel in the B11+Te130 fusion-evaporation reaction utilizing the HORUS γ-ray array. The level scheme above the Jπ=10+ isomer in Ba136 is revised and extended up to an excitation energy of approximately 5.5 MeV. From the results of angular-correlation measurements, the Ex=3707- and Ex=4920-keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both Te132 and Xe134 are characterized by high-energy 12+→10+ transitions, the Ba136E2 ground-state band is interrupted by negative-parity states only a few hundred keV above the Jπ=10+ isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in Ba137. The new results close a gap along the high-spin structure of N<82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130, and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly of proton character.

Identification of high-spin proton configurations in Ba 136 and Ba 137

Coraggio, L.;Itaco, N.;
2019

Abstract

The high-spin structures of Ba136 and Ba137 are investigated after multinucleon-transfer (MNT) and fusion-evaporation reactions. Ba136 is populated in a Xe136+U238 MNT reaction employing the high-resolution Advanced GAmma Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and in two Be9+Te130 fusion-evaporation reactions using the High-efficiency Observatory for γ-Ray Unique Spectroscopy (HORUS) at the FN tandem accelerator of the University of Cologne, Germany. Furthermore, both isotopes are populated in an elusive reaction channel in the B11+Te130 fusion-evaporation reaction utilizing the HORUS γ-ray array. The level scheme above the Jπ=10+ isomer in Ba136 is revised and extended up to an excitation energy of approximately 5.5 MeV. From the results of angular-correlation measurements, the Ex=3707- and Ex=4920-keV states are identified as the bandheads of positive- and negative-parity cascades. While the high-spin regimes of both Te132 and Xe134 are characterized by high-energy 12+→10+ transitions, the Ba136E2 ground-state band is interrupted by negative-parity states only a few hundred keV above the Jπ=10+ isomer. Furthermore, spins are established for several hitherto unassigned high-spin states in Ba137. The new results close a gap along the high-spin structure of N<82 Ba isotopes. Experimental results are compared to large-scale shell-model calculations employing the GCN50:82, Realistic SM, PQM130, and SN100PN interactions. The calculations suggest that the bandheads of the positive-parity bands in both isotopes are predominantly of proton character.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/401696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact