We consider a broad class of Continuous Time Random Walks (CTRW) with large fluctuations effects in space and time distributions: a random walk with trapping, describing subdiffusion in disordered and glassy materials, and a Lévy walk process, often used to model superdiffusive effects in inhomogeneous materials. We derive the scaling form of the probability distributions and the asymptotic properties of all its moments in the presence of a field by two powerful techniques, based on matching conditions and on the estimate of the contribution of rare events to power-law tails in a field.

Scaling properties of field-induced superdiffusion in continuous time random walks

Sarracino, A.;
2014

Abstract

We consider a broad class of Continuous Time Random Walks (CTRW) with large fluctuations effects in space and time distributions: a random walk with trapping, describing subdiffusion in disordered and glassy materials, and a Lévy walk process, often used to model superdiffusive effects in inhomogeneous materials. We derive the scaling form of the probability distributions and the asymptotic properties of all its moments in the presence of a field by two powerful techniques, based on matching conditions and on the estimate of the contribution of rare events to power-law tails in a field.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/398957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact