A Generalized Langevin Equation with exponential memory is proposed for the dynamics of a massive intruder in a dense granular fluid. The model reproduces numerical correlation and response functions, violating the Equilibrium Fluctuation-Dissipation Relations. The source of memory is identified in the coupling of the tracer velocity V with a spontaneous local velocity field U in the surrounding fluid: fluctuations of this field introduce a new time scale with its associated length scale. Such identification allows us to measure the intruder's fluctuating entropy production as a function of V and U, obtaining a neat verification of the fluctuation relation. Copyright © EPLA, 2010.

Irreversible dynamics of a massive intruder in dense granular fluids

Sarracino, A.;
2010

Abstract

A Generalized Langevin Equation with exponential memory is proposed for the dynamics of a massive intruder in a dense granular fluid. The model reproduces numerical correlation and response functions, violating the Equilibrium Fluctuation-Dissipation Relations. The source of memory is identified in the coupling of the tracer velocity V with a spontaneous local velocity field U in the surrounding fluid: fluctuations of this field introduce a new time scale with its associated length scale. Such identification allows us to measure the intruder's fluctuating entropy production as a function of V and U, obtaining a neat verification of the fluctuation relation. Copyright © EPLA, 2010.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/398950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 60
social impact