Velocity and density structure factors are measured over a hydrodynamic range of scales in a horizontal quasi-2D fluidized granular experiment, with packing fractions [10, 40]. The fluidization is realized by vertically vibrating a rough plate, on top of which particles perform a Brownian-like horizontal motion in addition to inelastic collisions. On one hand, the density structure factor is equal to that of elastic hard spheres, except in the limit of large length-scales, as it occurs in the presence of an effective interaction. On the other hand, the velocity field shows a more complex structure which is a genuine expression of a non-equilibrium steady state and which can be compared to a recent fluctuating hydrodynamic theory with non-equilibrium noise. The temporal decay of velocity modes autocorrelations is compatible with linear hydrodynamic equations with rates dictated by viscous momentum diffusion, corrected by a typical interaction time with the thermostat. Equal-time velocity structure factors display a peculiar shape with a plateau at large length-scales and another one at small scales, marking two different temperatures: the bath temperature T b, depending on shaking parameters, and the granular temperature T g T b, which is affected by collisions. The two ranges of scales are separated by a correlation length which grows with , after proper rescaling with the mean free path. © 2012 American Institute of Physics.

Structure factors in granular experiments with homogeneous fluidization

Sarracino, Alessandro;
2012

Abstract

Velocity and density structure factors are measured over a hydrodynamic range of scales in a horizontal quasi-2D fluidized granular experiment, with packing fractions [10, 40]. The fluidization is realized by vertically vibrating a rough plate, on top of which particles perform a Brownian-like horizontal motion in addition to inelastic collisions. On one hand, the density structure factor is equal to that of elastic hard spheres, except in the limit of large length-scales, as it occurs in the presence of an effective interaction. On the other hand, the velocity field shows a more complex structure which is a genuine expression of a non-equilibrium steady state and which can be compared to a recent fluctuating hydrodynamic theory with non-equilibrium noise. The temporal decay of velocity modes autocorrelations is compatible with linear hydrodynamic equations with rates dictated by viscous momentum diffusion, corrected by a typical interaction time with the thermostat. Equal-time velocity structure factors display a peculiar shape with a plateau at large length-scales and another one at small scales, marking two different temperatures: the bath temperature T b, depending on shaking parameters, and the granular temperature T g T b, which is affected by collisions. The two ranges of scales are separated by a correlation length which grows with , after proper rescaling with the mean free path. © 2012 American Institute of Physics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/398942
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 49
social impact