A simplified, but non trivial, mechanical model—gas of N particles of mass m in a box partitioned by n mobile adiabatic walls of mass M—interacting with two thermal baths at different temperatures, is discussed in the framework of kinetic theory. Following an approach due to Smoluchowski, from an analysis of the collisions particles/walls, we derive the values of the main thermodynamic quantities for the stationary non-equilibrium states. The results are compared with extensive numerical simulations; in the limit of large n, mN/M ≫ 1 and m/M ≪ 1, we find a good approximation of Fourier's law.

Fourier's law in a generalized piston model

Sarracino, Alessandro;
2017

Abstract

A simplified, but non trivial, mechanical model—gas of N particles of mass m in a box partitioned by n mobile adiabatic walls of mass M—interacting with two thermal baths at different temperatures, is discussed in the framework of kinetic theory. Following an approach due to Smoluchowski, from an analysis of the collisions particles/walls, we derive the values of the main thermodynamic quantities for the stationary non-equilibrium states. The results are compared with extensive numerical simulations; in the limit of large n, mN/M ≫ 1 and m/M ≪ 1, we find a good approximation of Fourier's law.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/398912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact