Water Distribution Networks (WDNs) can be regarded as complex networks and modeled as graphs. In this paper, Complex Network Theory is applied to characterize the behavior of WDNs from a topological point of view, reviewing some basic metrics, exploring their fundamental properties and the relationship between them. The crucial aim is to understand and describe the topology of WDNs and their structural organization to provide a novel tool of analysis which could help to find new solutions to several arduous problems of WDNs. The aim is to understand the role of the topological structure in the WDNs functioning. The methodology is applied to 21 existing networks and 13 literature networks. The comparison highlights some topological peculiarities and the possibility to define a set of best design parameters for ex-novo WDNs that could also be used to build hypothetical benchmark networks retaining the typical structure of real WDNs. Two well-known types of network ((a) square grid; and (b) random graph) are used for comparison, aiming at defining a possible mathematical model for WDNs. Finally, the interplay between topology and some performance requirements of WDNs is discussed.

Topological taxonomy of water distribution networks

Di Nardo, Armando;Di Natale, Michele;Greco, Roberto;Santonastaso, Giovanni Francesco;
2018

Abstract

Water Distribution Networks (WDNs) can be regarded as complex networks and modeled as graphs. In this paper, Complex Network Theory is applied to characterize the behavior of WDNs from a topological point of view, reviewing some basic metrics, exploring their fundamental properties and the relationship between them. The crucial aim is to understand and describe the topology of WDNs and their structural organization to provide a novel tool of analysis which could help to find new solutions to several arduous problems of WDNs. The aim is to understand the role of the topological structure in the WDNs functioning. The methodology is applied to 21 existing networks and 13 literature networks. The comparison highlights some topological peculiarities and the possibility to define a set of best design parameters for ex-novo WDNs that could also be used to build hypothetical benchmark networks retaining the typical structure of real WDNs. Two well-known types of network ((a) square grid; and (b) random graph) are used for comparison, aiming at defining a possible mathematical model for WDNs. Finally, the interplay between topology and some performance requirements of WDNs is discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/398685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 57
social impact