We present a new experimental investigation about the possibility to use fluorescent optical fibers as light sources, instead of halogen lamps, for plasmonic sensing. The novel configuration has been first introduced, and then the components' properties and the experimental results have been illustrated. Two sensor systems have been realized and characterized by exploiting red and blue fluorescent optical fibers to illuminate different plasmonic sensors and observe the transmitted spectra by a spectrometer. In particular, the plasmonic sensors have been realized with two different metals, gold and silver, sputtered on D-shaped plastic optical fibers (POFs) with an optical buffer layer between the metal film and the POF core. We have matched the metal's plasmonic resonance wavelength with the emission of a specific fluorescent optical fiber. The good quality of the experimental results, the low-power consumption, the low cost, the remote sensing capability, the small size, and the simple scheme of the configuration make this strategy a potentially suitable diagnostic tool for biosensing applications.

Plasmonic Sensing in D-Shaped POFs with Fluorescent Optical Fibers as Light Sources

Cennamo, Nunzio;Zeni, Luigi
2018

Abstract

We present a new experimental investigation about the possibility to use fluorescent optical fibers as light sources, instead of halogen lamps, for plasmonic sensing. The novel configuration has been first introduced, and then the components' properties and the experimental results have been illustrated. Two sensor systems have been realized and characterized by exploiting red and blue fluorescent optical fibers to illuminate different plasmonic sensors and observe the transmitted spectra by a spectrometer. In particular, the plasmonic sensors have been realized with two different metals, gold and silver, sputtered on D-shaped plastic optical fibers (POFs) with an optical buffer layer between the metal film and the POF core. We have matched the metal's plasmonic resonance wavelength with the emission of a specific fluorescent optical fiber. The good quality of the experimental results, the low-power consumption, the low cost, the remote sensing capability, the small size, and the simple scheme of the configuration make this strategy a potentially suitable diagnostic tool for biosensing applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/394874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact