PRDM2/RIZ is a member of a superfamily of histone/protein methyltransferases (PRDMs), which are characterized by the conserved N-terminal PR domain, with methyltransferase activity and zinc finger arrays at the C-terminus. Similar to other family members, two main protein types, known as RIZ1 and RIZ2, are produced from the PRDM2 locus differing by the presence or absence of the PR domain. The imbalance in their respective amounts may be an important cause of malignancy, with the PR-positive isoform commonly lost or downregulated and the PR-negative isoform always being present at higher levels in cancer cells. Interestingly, the RIZ1 isoform also represents an important target of estradiol action downstream of the interaction with hormone receptor. Furthermore, the imbalance between the two products could also be a molecular basis for other human diseases. Thus, understanding the molecular mechanisms underlying PRDM2 function could be useful in the pathophysiological context, with a potential to exploit this information in clinical practice.

PRDM2/RIZ is a member of a superfamily of histone/protein methyltransferases (PRDMs), which are characterized by the conserved N-terminal PR domain, with methyltransferase activity and zinc finger arrays at the C-terminus. Similar to other family members, two main protein types, known as RIZ1 and RIZ2, are produced from the PRDM2 locus differing by the presence or absence of the PR domain. The imbalance in their respective amounts may be an important cause of malignancy, with the PR-positive isoform commonly lost or downregulated and the PR-negative isoform always being present at higher levels in cancer cells. Interestingly, the RIZ1 isoform also represents an important target of estradiol action downstream of the interaction with hormone receptor. Furthermore, the imbalance between the two products could also be a molecular basis for other human diseases. Thus, understanding the molecular mechanisms underlying PRDM2 function could be useful in the pathophysiological context, with a potential to exploit this information in clinical practice.

Human PRDM2: Structure, function and pathophysiology

Rienzo M.;Casamassimi A.;Abbondanza C.
2018

Abstract

PRDM2/RIZ is a member of a superfamily of histone/protein methyltransferases (PRDMs), which are characterized by the conserved N-terminal PR domain, with methyltransferase activity and zinc finger arrays at the C-terminus. Similar to other family members, two main protein types, known as RIZ1 and RIZ2, are produced from the PRDM2 locus differing by the presence or absence of the PR domain. The imbalance in their respective amounts may be an important cause of malignancy, with the PR-positive isoform commonly lost or downregulated and the PR-negative isoform always being present at higher levels in cancer cells. Interestingly, the RIZ1 isoform also represents an important target of estradiol action downstream of the interaction with hormone receptor. Furthermore, the imbalance between the two products could also be a molecular basis for other human diseases. Thus, understanding the molecular mechanisms underlying PRDM2 function could be useful in the pathophysiological context, with a potential to exploit this information in clinical practice.
2018
PRDM2/RIZ is a member of a superfamily of histone/protein methyltransferases (PRDMs), which are characterized by the conserved N-terminal PR domain, with methyltransferase activity and zinc finger arrays at the C-terminus. Similar to other family members, two main protein types, known as RIZ1 and RIZ2, are produced from the PRDM2 locus differing by the presence or absence of the PR domain. The imbalance in their respective amounts may be an important cause of malignancy, with the PR-positive isoform commonly lost or downregulated and the PR-negative isoform always being present at higher levels in cancer cells. Interestingly, the RIZ1 isoform also represents an important target of estradiol action downstream of the interaction with hormone receptor. Furthermore, the imbalance between the two products could also be a molecular basis for other human diseases. Thus, understanding the molecular mechanisms underlying PRDM2 function could be useful in the pathophysiological context, with a potential to exploit this information in clinical practice.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/393220
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact