We prove that a set O of points of PG(3, q), q odd, of line-type (0, m, n)_1, n not equal q, with a point on which there are at most q + 1 lines intersecting O in exactly m points is either an elliptic quadric or n = q + 1 and O is the complement of a line in PG(3, q).

A new characterization of elliptic quadrics in PG(3; q), q odd.

Vito Napolitano
2018

Abstract

We prove that a set O of points of PG(3, q), q odd, of line-type (0, m, n)_1, n not equal q, with a point on which there are at most q + 1 lines intersecting O in exactly m points is either an elliptic quadric or n = q + 1 and O is the complement of a line in PG(3, q).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/392172
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact