Triple negative breast cancer (TNBC) is an invasive, metastatic, highly aggressive tumor. Cytotoxic chemotherapy represents the current treatment for TNBC. However, relapse and chemoresistance are very frequent. Therefore, new therapeutic approaches that are able to increase the sensitivity to cytotoxic drugs are needed. Forskolin, a natural cAMP elevating agent, has been used for several centuries in medicine and its safeness has also been demonstrated in modern studies. Recently, forskolin is emerging as a possible novel molecule for cancer therapy. Here, we investigate the effects of forskolin on the sensitivity of MDA-MB-231 and MDA-MB-468 TNBC cells to doxorubicin through MTT assay, flow cytometry-based assays (cell-cycle progression and cell death), cell number counting and immunoblotting experiments. We demonstrate that forskolin strongly enhances doxorubicin-induced antiproliferative effects by cell death induction. Similar effects are observed with IBMX and isoproterenol cAMP elevating agents and 8-Br-cAMP analog, but not by using 8-pCPT-2'-O-Me-cAMP Epac activator. It is important to note that the forskolininduced potentiation of sensitivity to doxorubicin is accompanied by a strong inhibition of ERK1/2 phosphorylation, is mimicked by ERK inhibitor PD98059 and is prevented by pre-treatment with Protein Kinase A (PKA) and adenylate cyclase inhibitors. Altogether, our data indicate that forskolin sensitizes TNBC cells to doxorubicin via a mechanism depending on the cAMP/PKAmediated ERK inhibition. Our findings sustain the evidence of anticancer activity mediated by forskolin and encourage the design of future in-vivo/clinical studies in order to explore forskolin as a doxorubicin sensitizer for possible use in TNBC patients.
Forskolin improves sensitivity to doxorubicin of triple negative breast cancer cells via Protein Kinase A-mediated ERK1/2 inhibition
Luigi Sapio;Ilaria Caiafa;Emilio Chiosi;Annamaria Spina;Silvio Naviglio
2018
Abstract
Triple negative breast cancer (TNBC) is an invasive, metastatic, highly aggressive tumor. Cytotoxic chemotherapy represents the current treatment for TNBC. However, relapse and chemoresistance are very frequent. Therefore, new therapeutic approaches that are able to increase the sensitivity to cytotoxic drugs are needed. Forskolin, a natural cAMP elevating agent, has been used for several centuries in medicine and its safeness has also been demonstrated in modern studies. Recently, forskolin is emerging as a possible novel molecule for cancer therapy. Here, we investigate the effects of forskolin on the sensitivity of MDA-MB-231 and MDA-MB-468 TNBC cells to doxorubicin through MTT assay, flow cytometry-based assays (cell-cycle progression and cell death), cell number counting and immunoblotting experiments. We demonstrate that forskolin strongly enhances doxorubicin-induced antiproliferative effects by cell death induction. Similar effects are observed with IBMX and isoproterenol cAMP elevating agents and 8-Br-cAMP analog, but not by using 8-pCPT-2'-O-Me-cAMP Epac activator. It is important to note that the forskolininduced potentiation of sensitivity to doxorubicin is accompanied by a strong inhibition of ERK1/2 phosphorylation, is mimicked by ERK inhibitor PD98059 and is prevented by pre-treatment with Protein Kinase A (PKA) and adenylate cyclase inhibitors. Altogether, our data indicate that forskolin sensitizes TNBC cells to doxorubicin via a mechanism depending on the cAMP/PKAmediated ERK inhibition. Our findings sustain the evidence of anticancer activity mediated by forskolin and encourage the design of future in-vivo/clinical studies in order to explore forskolin as a doxorubicin sensitizer for possible use in TNBC patients.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.