Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO2 and PCL/ZrO2) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO2 = 88 wt %) and Zr2 (PCL = 12, ZrO2 = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.

Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO2and PCL/ZrO2) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO2= 88 wt %) and Zr2 (PCL = 12, ZrO2= 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.

Further theoretical insight into the mechanical properties of polycaprolactone loaded with organic-inorganic hybrid fillers

MAIETTA, Saverio;Ronca, Dante;Catauro, Michelina;
2018

Abstract

Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO2and PCL/ZrO2) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO2= 88 wt %) and Zr2 (PCL = 12, ZrO2= 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.
2018
Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO2 and PCL/ZrO2) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO2 = 88 wt %) and Zr2 (PCL = 12, ZrO2 = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/390289
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 43
social impact