Background and Aims Mediterranean trees have patterns of cambial activity with one or more pauses per year, leading to intra-annual density fluctuations (IADFs) in tree rings. We analysed xylogenesis (January 2015-January 2016) in Pinus pinea L. and Arbutus unedo L., co-occurring at a site on Mt. Vesuvius (southern Italy), to identify the cambial productivity and timing of IADF formation.Methods Dendrochronological methods and quantitative wood anatomy were applied and enabled IADF identification and classification.Key Results We showed that cambium in P. pinea was productive throughout the calendar year. From January to March 2015, post-cambial (enlarging) earlywood-like tracheids were observed, which were similar to transition tracheids. The beginning of the tree ring was therefore not marked by a sharp boundary between latewood of the previous year and the new xylem produced. True earlywood tracheids were formed in April. L-IADFs were formed in autumn, with earlywood-like cells in latewood. In A. unedo, a double pause in cell production was observed, in summer and winter, leading to L-IADFs in autumn as well. Moreover, the formation of more than one IADF was observed in A. unedo.Conclusions Despite having completely different wood formation models and different life strategies, the production of earlywood, latewood and IADF cells was strongly controlled by climatic factors in the two species. Such cambial production patterns need to be taken into account in dendroecological studies to interpret climatic signals in wood from Mediterranean trees.

Xylogenesis reveals the genesis and ecological signal of IADFs in Pinus pinea L. and Arbutus unedo L

Giovanna Battipaglia;
2018

Abstract

Background and Aims Mediterranean trees have patterns of cambial activity with one or more pauses per year, leading to intra-annual density fluctuations (IADFs) in tree rings. We analysed xylogenesis (January 2015-January 2016) in Pinus pinea L. and Arbutus unedo L., co-occurring at a site on Mt. Vesuvius (southern Italy), to identify the cambial productivity and timing of IADF formation.Methods Dendrochronological methods and quantitative wood anatomy were applied and enabled IADF identification and classification.Key Results We showed that cambium in P. pinea was productive throughout the calendar year. From January to March 2015, post-cambial (enlarging) earlywood-like tracheids were observed, which were similar to transition tracheids. The beginning of the tree ring was therefore not marked by a sharp boundary between latewood of the previous year and the new xylem produced. True earlywood tracheids were formed in April. L-IADFs were formed in autumn, with earlywood-like cells in latewood. In A. unedo, a double pause in cell production was observed, in summer and winter, leading to L-IADFs in autumn as well. Moreover, the formation of more than one IADF was observed in A. unedo.Conclusions Despite having completely different wood formation models and different life strategies, the production of earlywood, latewood and IADF cells was strongly controlled by climatic factors in the two species. Such cambial production patterns need to be taken into account in dendroecological studies to interpret climatic signals in wood from Mediterranean trees.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/387146
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 29
social impact