Purpose of Review: This review aims to provide an overview of the most recent and significant functional neuroimaging studies which have clarified the complex mechanisms underlying migraine pathophysiology. Recent Findings: The recent data allow us to overcome the concept of a migraine generator suggesting that functional networks abnormalities may lead to changes in different brain area activities and consequent reduced migraine thresholds susceptibility, likely associated with higher migraine severity and burden. Summary: Although functional magnetic resonance imaging studies have allowed recognition of several migraine mechanisms, its pathophysiology is not completely understood and is still a matter of research. Nevertheless, in recent years, functional magnetic resonance imaging studies have allowed us to implement our knowledge of migraine pathophysiology. The pivotal role of both the brainstem and the hippocampus in the first phase of a migraine attack, the involvement of limbic pathway in the constitution of a migrainous pain network, the disrupted functional connectivity in cognitive brain networks, as well as the abnormal function of the visual network in patients with migraine with aura are the main milestones in migraine imaging achieved through functional imaging advances. We believe that further studies based on combined functional and structural techniques and the investigation of the different phases of migraine cycle may represent an efficient methodological approach for comprehensively looking into the migrainous brain secrets.

Physiopathology of Migraine: What Have We Learned from Functional Imaging?

Russo, Antonio;Silvestro, Marcello;Tedeschi, Gioacchino;Tessitore, Alessandro
2017

Abstract

Purpose of Review: This review aims to provide an overview of the most recent and significant functional neuroimaging studies which have clarified the complex mechanisms underlying migraine pathophysiology. Recent Findings: The recent data allow us to overcome the concept of a migraine generator suggesting that functional networks abnormalities may lead to changes in different brain area activities and consequent reduced migraine thresholds susceptibility, likely associated with higher migraine severity and burden. Summary: Although functional magnetic resonance imaging studies have allowed recognition of several migraine mechanisms, its pathophysiology is not completely understood and is still a matter of research. Nevertheless, in recent years, functional magnetic resonance imaging studies have allowed us to implement our knowledge of migraine pathophysiology. The pivotal role of both the brainstem and the hippocampus in the first phase of a migraine attack, the involvement of limbic pathway in the constitution of a migrainous pain network, the disrupted functional connectivity in cognitive brain networks, as well as the abnormal function of the visual network in patients with migraine with aura are the main milestones in migraine imaging achieved through functional imaging advances. We believe that further studies based on combined functional and structural techniques and the investigation of the different phases of migraine cycle may represent an efficient methodological approach for comprehensively looking into the migrainous brain secrets.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/386977
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact