A new mathematical approach to kinematics and dynamics of planar uniform vortices in an incompressible inviscid fluid is presented. It is based on an integral relation between Schwarz function of the vortex boundary and induced velocity. This relation is firstly used for investigating the kinematics of a vortex having its Schwarz function with two simple poles in a transformed plane. The vortex boundary is the image of the unit circle through the conformal map obtained by conjugating its Schwarz function. The resulting analysis is based on geometric and algebraic properties of that map. Moreover, it is shown that the steady configurations of a uniform vortex, possibly in presence of point vortices, can be also investigated by means of the integral relation. The vortex equilibria are divided in two classes, depending on the behavior of the velocity on the boundary, measured in a reference system rotating with this curve. If it vanishes, the analysis is rather simple. However, vortices having nonvanishing relative velocity are also investigated, in presence of a polygonal symmetry. In order to study the vortex dynamics, the definition of Schwarz function is then extended to a Lagrangian framework. This Lagrangian Schwarz function solves a nonlinear integrodifferential Cauchy problem, that is transformed in a singular integral equation. Its analytical solution is here approached in terms of successive approximations. The self-induced dynamics, as well as the interactions with a point vortex, or between two uniform vortices are analyzed.

A complex analysis approach to the motion of uniform vortices

Riccardi, Giorgio
2018

Abstract

A new mathematical approach to kinematics and dynamics of planar uniform vortices in an incompressible inviscid fluid is presented. It is based on an integral relation between Schwarz function of the vortex boundary and induced velocity. This relation is firstly used for investigating the kinematics of a vortex having its Schwarz function with two simple poles in a transformed plane. The vortex boundary is the image of the unit circle through the conformal map obtained by conjugating its Schwarz function. The resulting analysis is based on geometric and algebraic properties of that map. Moreover, it is shown that the steady configurations of a uniform vortex, possibly in presence of point vortices, can be also investigated by means of the integral relation. The vortex equilibria are divided in two classes, depending on the behavior of the velocity on the boundary, measured in a reference system rotating with this curve. If it vanishes, the analysis is rather simple. However, vortices having nonvanishing relative velocity are also investigated, in presence of a polygonal symmetry. In order to study the vortex dynamics, the definition of Schwarz function is then extended to a Lagrangian framework. This Lagrangian Schwarz function solves a nonlinear integrodifferential Cauchy problem, that is transformed in a singular integral equation. Its analytical solution is here approached in terms of successive approximations. The self-induced dynamics, as well as the interactions with a point vortex, or between two uniform vortices are analyzed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/386406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact