We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG(5,q2), for q2>2·38odd, whose associated semifield has center containing Fq . Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2>2· 38odd, with middle nucleus containing Fq2and center containing Fq.

On symplectic semifield spreads of PG(5,q^2), q odd

Marino, Giuseppe;
2018

Abstract

We prove that there exist exactly three non-equivalent symplectic semifield spreads of PG(5,q2), for q2>2·38odd, whose associated semifield has center containing Fq . Equivalently, we classify, up to isotopy, commutative semifields of order q6, for q2>2· 38odd, with middle nucleus containing Fq2and center containing Fq.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/386391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact