Laminar mixed convection in a two-dimensional symmetrically and partially heated vertical channel is investigated. The heaters are located on both walls and uniform temperature is applied on the heated sections. The number of heaters is considered as 1, 4, 8, and 10. Aluminum oxide/water nanofluid is considered as working fluid and the inlet velocity is uniform. The continuity, momentum and energy equations with appropriate boundary conditions are solved in dimensionless form, numerically. The study is performed for Richardson number of 0.01 and 10, Reynolds number of 100 and 500, and nanofluid volume fraction of 0% and 5%. Based on the obtained velocity and temperature distributions, the local and mean Nusselt number is calculated and plotted for different cases. The variation of the mean Nusselt number with the number of the heated portions is also discussed. It is found that the addition of nanoparticles into the base fluid increases mean Nusselt number but the rate of increase depends on Reynolds, Richardson numbers and number of heated portions. It is possible to increase mean Nusselt number 138% by increasing Reynolds number from 100 to 500, Richardson number from 0.01 to 10 and number of heated portions from 1 to 10 when volume fraction value is 5%.

Enhancement of Heat Transfer in Partially Heated Vertical Channel Under Mixed Convection by Using Al2O3Nanoparticles

Manca, Oronzio
Membro del Collaboration Group
;
Buonomo, Bernardo
Membro del Collaboration Group
2018

Abstract

Laminar mixed convection in a two-dimensional symmetrically and partially heated vertical channel is investigated. The heaters are located on both walls and uniform temperature is applied on the heated sections. The number of heaters is considered as 1, 4, 8, and 10. Aluminum oxide/water nanofluid is considered as working fluid and the inlet velocity is uniform. The continuity, momentum and energy equations with appropriate boundary conditions are solved in dimensionless form, numerically. The study is performed for Richardson number of 0.01 and 10, Reynolds number of 100 and 500, and nanofluid volume fraction of 0% and 5%. Based on the obtained velocity and temperature distributions, the local and mean Nusselt number is calculated and plotted for different cases. The variation of the mean Nusselt number with the number of the heated portions is also discussed. It is found that the addition of nanoparticles into the base fluid increases mean Nusselt number but the rate of increase depends on Reynolds, Richardson numbers and number of heated portions. It is possible to increase mean Nusselt number 138% by increasing Reynolds number from 100 to 500, Richardson number from 0.01 to 10 and number of heated portions from 1 to 10 when volume fraction value is 5%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/386313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact