The identification of human leukocyte antigen (HLA) antibodies in the sera of candidates awaiting organ transplantation has evolved over time. This has been possible because of the introduction of more sensitive techniques and to the increasing focus on the structural aspects of the HLA epitopes. The use of the HLAMatchmaker algorithm in the analysis of positive sera and the verification of HLA ABC epitopes in the HLA Epitope Registry website provide new stimuli on the interpretation of antibody reactivity. The epitopes defined by eplet pairs often involve a nonself-eplet and a self-eplet (nonself-self paradigm), suggesting that the antibody response to an HLA mismatch must have an auto-reactive component. Here, we report an application of the nonself-self paradigm that provides a basis for better knowledge and interpretation of HLA-antibody reactivity in Luminex assays with single alleles.
Antibody-reactive class I epitopes defined by pairs of mismatched eplets and self-eplets
Minucci, P. B.;Napoli, C.
2015
Abstract
The identification of human leukocyte antigen (HLA) antibodies in the sera of candidates awaiting organ transplantation has evolved over time. This has been possible because of the introduction of more sensitive techniques and to the increasing focus on the structural aspects of the HLA epitopes. The use of the HLAMatchmaker algorithm in the analysis of positive sera and the verification of HLA ABC epitopes in the HLA Epitope Registry website provide new stimuli on the interpretation of antibody reactivity. The epitopes defined by eplet pairs often involve a nonself-eplet and a self-eplet (nonself-self paradigm), suggesting that the antibody response to an HLA mismatch must have an auto-reactive component. Here, we report an application of the nonself-self paradigm that provides a basis for better knowledge and interpretation of HLA-antibody reactivity in Luminex assays with single alleles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.