Background The aim of this study was to evaluate the effects on adipocyte morphology of 2 techniques of fat harvesting and of fat purification in lipofilling, considering that the number of viable healthy adipocytes is important in fat survival in recipient areas of lipofilling. Methods Fat harvesting was performed in 10 female patients from flanks, on one side with a 2-mm Coleman cannula and on the other side with a 3-mm Mercedes cannula. Thirty milliliter of fat tissue from each side was collected and divided into three 10 mL syringes: A, B, and C. The fat inside syringe A was left untreated, the fat in syringe B underwent simple sedimentation, and the fat inside syringe C underwent centrifugation at 3000 rpm for 3 minutes. Each fat graft specimen was processed for examination under low-vacuum scanning electron microscope. Diameter (μ) and number of adipocytes per square millimeter and number of altered adipocytes per square millimeter were evaluated. Untreated specimens harvested with the 2 different techniques were first compared, then sedimented versus centrifuged specimens harvested with the same technique were compared. Statistical analysis was performed using Wilcoxon signed rank test. Results The number of adipocytes per square millimeter was statistically higher in specimens harvested with the 3-mm Mercedes cannula (P = 0.0310). The number of altered cells was statistically higher in centrifuged specimens than in sedimented ones using both methods of fat harvesting (P = 0.0080) with a 2-mm Coleman cannula and (P = 0.0050) with a 3-mm Mercedes cannula. Alterations in adipocyte morphology consisted in wrinkling of the membrane, opening of pore with leakage of oily material, reduction of cellular diameter, and total collapse of the cellular membrane. Conclusions Fat harvesting by a 3-mm cannula results in a higher number of adipocytes and centrifugation of the harvested fat results in a higher number of morphologic altered cells than sedimentation.
Background The aim of this study was to evaluate the effects on adipocyte morphology of 2 techniques of fat harvesting and of fat purification in lipofilling, considering that the number of viable healthy adipocytes is important in fat survival in recipient areas of lipofilling. Methods Fat harvesting was performed in 10 female patients from flanks, on one side with a 2-mm Coleman cannula and on the other side with a 3-mm Mercedes cannula. Thirty milliliter of fat tissue from each side was collected and divided into three 10 mL syringes: A, B, and C. The fat inside syringe A was left untreated, the fat in syringe B underwent simple sedimentation, and the fat inside syringe C underwent centrifugation at 3000 rpm for 3 minutes. Each fat graft specimen was processed for examination under low-vacuum scanning electron microscope. Diameter (μ) and number of adipocytes per square millimeter and number of altered adipocytes per square millimeter were evaluated. Untreated specimens harvested with the 2 different techniques were first compared, then sedimented versus centrifuged specimens harvested with the same technique were compared. Statistical analysis was performed using Wilcoxon signed rank test. Results The number of adipocytes per square millimeter was statistically higher in specimens harvested with the 3-mm Mercedes cannula (P = 0.0310). The number of altered cells was statistically higher in centrifuged specimens than in sedimented ones using both methods of fat harvesting (P = 0.0080) with a 2-mm Coleman cannula and (P = 0.0050) with a 3-mm Mercedes cannula. Alterations in adipocyte morphology consisted in wrinkling of the membrane, opening of pore with leakage of oily material, reduction of cellular diameter, and total collapse of the cellular membrane. Conclusions Fat harvesting by a 3-mm cannula results in a higher number of adipocytes and centrifugation of the harvested fat results in a higher number of morphologic altered cells than sedimentation.
A scanning electron microscope study and statistical analysis of adipocyte morphology in lipofilling: Comparing the effects of harvesting and purification procedures with 2 different techniques
Faenza, Mario;
2015
Abstract
Background The aim of this study was to evaluate the effects on adipocyte morphology of 2 techniques of fat harvesting and of fat purification in lipofilling, considering that the number of viable healthy adipocytes is important in fat survival in recipient areas of lipofilling. Methods Fat harvesting was performed in 10 female patients from flanks, on one side with a 2-mm Coleman cannula and on the other side with a 3-mm Mercedes cannula. Thirty milliliter of fat tissue from each side was collected and divided into three 10 mL syringes: A, B, and C. The fat inside syringe A was left untreated, the fat in syringe B underwent simple sedimentation, and the fat inside syringe C underwent centrifugation at 3000 rpm for 3 minutes. Each fat graft specimen was processed for examination under low-vacuum scanning electron microscope. Diameter (μ) and number of adipocytes per square millimeter and number of altered adipocytes per square millimeter were evaluated. Untreated specimens harvested with the 2 different techniques were first compared, then sedimented versus centrifuged specimens harvested with the same technique were compared. Statistical analysis was performed using Wilcoxon signed rank test. Results The number of adipocytes per square millimeter was statistically higher in specimens harvested with the 3-mm Mercedes cannula (P = 0.0310). The number of altered cells was statistically higher in centrifuged specimens than in sedimented ones using both methods of fat harvesting (P = 0.0080) with a 2-mm Coleman cannula and (P = 0.0050) with a 3-mm Mercedes cannula. Alterations in adipocyte morphology consisted in wrinkling of the membrane, opening of pore with leakage of oily material, reduction of cellular diameter, and total collapse of the cellular membrane. Conclusions Fat harvesting by a 3-mm cannula results in a higher number of adipocytes and centrifugation of the harvested fat results in a higher number of morphologic altered cells than sedimentation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.