Targeting the biosynthetic pathway of neuroactive steroids with specific 18 kDa translocator protein (TSPO) ligands may be a viable therapeutic approach for a variety of neurodegenerative and neuropsychiatric diseases. However, the lack of correlation between binding affinity and in vitro steroidogenic efficacy has limited the identification of lead compounds by traditional affinity-based drug discovery strategies. Our recent research indicates that the key factor for robust steroidogenic TSPO ligand efficacy is not the binding affinity per se, but rather the time the compound spends in the target, namely its residence time (RT). The assessment of this kinetic parameter during the in vitro characterization of compounds appears mandatory in order to obtain structure-efficacy relationships suitable for the future development of novel molecules with promising pharmacological properties.

Residence Time, a New parameter to Predict Neurosteroidogenic Efficacy of Translocator Protein (TSPO) Ligands: the Case Study of N,N-Dialkyl-2-arylindol-3-ylglyoxylamides

COSCONATI, Sandro;
2017

Abstract

Targeting the biosynthetic pathway of neuroactive steroids with specific 18 kDa translocator protein (TSPO) ligands may be a viable therapeutic approach for a variety of neurodegenerative and neuropsychiatric diseases. However, the lack of correlation between binding affinity and in vitro steroidogenic efficacy has limited the identification of lead compounds by traditional affinity-based drug discovery strategies. Our recent research indicates that the key factor for robust steroidogenic TSPO ligand efficacy is not the binding affinity per se, but rather the time the compound spends in the target, namely its residence time (RT). The assessment of this kinetic parameter during the in vitro characterization of compounds appears mandatory in order to obtain structure-efficacy relationships suitable for the future development of novel molecules with promising pharmacological properties.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/376614
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact