Line intensities for carbon dioxide are measured with a novel spectroscopic approach, assisted by an optical frequency comb synthesizer for frequency calibration purposes. The main feature of the spectrometer consists in the exploitation of optical feedback from a V-shaped high-finesse optical resonator to effectively narrow a distributed feedback diode laser at the wavelength of 2 m. Lasergas interaction takes place inside an isothermal cell, which is placed on the transmission from the cavity. High quality, self-calibrated, absorption spectra are observed in pure CO2 samples at different gas pressures, in coincidence with three lines of the R-branch of the nu1 + 2nu2 + nu3 band. Line intensities are determined using a global fitting approach in which a manifold of spectra are simultaneously analyzed across the range of pressures between 5 and 100 Torr, sharing a restricted number of unknown parameters. Various sources of uncertainty have been identified and carefully quantified, thus leading to an overall uncertainty ranging between 0.17% and 0.23%. The measured values are in a very good agreement with recent ab initio predictions.

Highly accurate intensity factors of pure CO2 lines near 2 μm

Fasci, E.;MORETTI, Luigi;GIANFRANI, Livio
;
CASTRILLO, Antonio
2017

Abstract

Line intensities for carbon dioxide are measured with a novel spectroscopic approach, assisted by an optical frequency comb synthesizer for frequency calibration purposes. The main feature of the spectrometer consists in the exploitation of optical feedback from a V-shaped high-finesse optical resonator to effectively narrow a distributed feedback diode laser at the wavelength of 2 m. Lasergas interaction takes place inside an isothermal cell, which is placed on the transmission from the cavity. High quality, self-calibrated, absorption spectra are observed in pure CO2 samples at different gas pressures, in coincidence with three lines of the R-branch of the nu1 + 2nu2 + nu3 band. Line intensities are determined using a global fitting approach in which a manifold of spectra are simultaneously analyzed across the range of pressures between 5 and 100 Torr, sharing a restricted number of unknown parameters. Various sources of uncertainty have been identified and carefully quantified, thus leading to an overall uncertainty ranging between 0.17% and 0.23%. The measured values are in a very good agreement with recent ab initio predictions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/375690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact