The construction and operation of the JT-60SA tokamak is the main project currently carried out jointly by Japan and the European Union under the Broader Approach agreement. Within the Integrated Project Team, Japanese and European scientists are developing and testing a number of tools to support preliminary studies and future operations of JT-60SA. Within this collaborative framework, European scientists are using a set of assessed modeling tools to design and validate possible solutions for the plasma magnetic control system of JT-60SA. This paper introduces these tools and describes a possible control architecture to be used on the JT-60SA tokamak. The effectiveness of the proposed architecture is shown by means of numerical simulations.

Control-oriented tools for the design and validation of the JT-60SA magnetic control system

MATTEI, Massimiliano;
2017

Abstract

The construction and operation of the JT-60SA tokamak is the main project currently carried out jointly by Japan and the European Union under the Broader Approach agreement. Within the Integrated Project Team, Japanese and European scientists are developing and testing a number of tools to support preliminary studies and future operations of JT-60SA. Within this collaborative framework, European scientists are using a set of assessed modeling tools to design and validate possible solutions for the plasma magnetic control system of JT-60SA. This paper introduces these tools and describes a possible control architecture to be used on the JT-60SA tokamak. The effectiveness of the proposed architecture is shown by means of numerical simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/372827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact