In this paper we consider the following elliptic system in, where λ is a real parameter, p ∈(1, 5) if λ < 0 while p ∈(3, 5) if λ > 0 and K(x), a(x) are non-negative real functions defined on ℝ3. Assuming that limpipexpipe→+∞K(x)=K∞ >0 and limpipexpipe→+∞a(x)=a∞ >0 and satisfying suitable assumptions, but not requiring any symmetry property on them, we prove the existence of positive ground states, namely the existence of positive solutions with minimal energy. © 2011 Università degli Studi di Napoli "Federico II".

Ground states for Schrödinger-Poisson type systems

VAIRA, Giusi
2011

Abstract

In this paper we consider the following elliptic system in, where λ is a real parameter, p ∈(1, 5) if λ < 0 while p ∈(3, 5) if λ > 0 and K(x), a(x) are non-negative real functions defined on ℝ3. Assuming that limpipexpipe→+∞K(x)=K∞ >0 and limpipexpipe→+∞a(x)=a∞ >0 and satisfying suitable assumptions, but not requiring any symmetry property on them, we prove the existence of positive ground states, namely the existence of positive solutions with minimal energy. © 2011 Università degli Studi di Napoli "Federico II".
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/368451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? ND
social impact