Obesity and type 2 diabetes are associated disorders that involve a multiplicity of tissues. Both fasting and physical exercise are known to counteract dyslipidemia/hyperglycemia. Skeletal muscle plays a key role in the control of blood glucose levels, and the metabolic changes and related signaling pathways in skeletal muscle induced by fasting overlap with those induced by exercise. The reduction of fat disposal has been shown to extend to the liver and to white and brown adipose tissue and to involve an increase in their metabolic activities. In recent years signal transduction pathways related to exercise and fasting/food withdrawal in muscle have been intensively studied, both in animals and in humans. Combining fasting/food withdrawal with exercise in animals as well as in humans causes changes unlike those seen during fasting/food withdrawal or exercise alone, which favor repair of muscle over autophagy. In addition, compounds that mimic exercise have been studied in combination with exercise or fasting/food withdrawal. This review addresses our current knowledge of the mechanisms that underlie the individual and combined effects of fasting/food withdrawal, endurance or resistance exercise, and their mimetics, in muscle vs other organs in rodents and humans, and highlights which combinations may improve metabolic disorders.-Jaspers, R. T., Zillikens, M. C., Friesema, E. C. H., delli Paoli, G., Bloch, W., Uitterlinden, A. G., Goglia, F., Lanni, A., de Lange, P. Exercise, fasting, and mimetics: toward beneficial combinations.

Obesity and type 2 diabetes are associated disorders that involve a multiplicity of tissues. Both fasting and physical exercise are known to counteract dyslipidemia/hyperglycemia. Skeletal muscle plays a key role in the control of blood glucose levels, and the metabolic changes and related signaling pathways in skeletal muscle induced by fasting overlap with those induced by exercise. The reduction of fat disposal has been shown to extend to the liver and to white and brown adipose tissue and to involve an increase in their metabolic activities. In recent years signal transduction pathways related to exercise and fasting/food withdrawal in muscle have been intensively studied, both in animals and in humans. Combining fasting/food withdrawal with exercise in animals aswell as in humans causes changes unlike those seen during fasting/food withdrawal or exercise alone, which favor repair of muscle over autophagy. In addition, compounds that mimic exercise have been studied in combination with exercise or fasting/food with drawal. This review addresses our current knowledge of the mechanisms that underlie the individual and combined effects of fasting/food withdrawal, endurance or resistance exercise, and their mimetics, in muscle vs. other organs in rodents and humans, and highlights which combinations may improve metabolic disorders. -Jaspers, R. T., Zillikens, M. C., Friesema, E. C. H., delli Paoli, G., Bloch, W., Uitterlinden, A. G., Goglia, F., Lanni, A., de Lange, P. Exercise, fasting, and mimetics: toward beneficial combinations.

Exercise, fasting, and mimetics: Toward beneficial combinations?

LANNI, Antonia;DE LANGE, Pieter
2017

Abstract

Obesity and type 2 diabetes are associated disorders that involve a multiplicity of tissues. Both fasting and physical exercise are known to counteract dyslipidemia/hyperglycemia. Skeletal muscle plays a key role in the control of blood glucose levels, and the metabolic changes and related signaling pathways in skeletal muscle induced by fasting overlap with those induced by exercise. The reduction of fat disposal has been shown to extend to the liver and to white and brown adipose tissue and to involve an increase in their metabolic activities. In recent years signal transduction pathways related to exercise and fasting/food withdrawal in muscle have been intensively studied, both in animals and in humans. Combining fasting/food withdrawal with exercise in animals aswell as in humans causes changes unlike those seen during fasting/food withdrawal or exercise alone, which favor repair of muscle over autophagy. In addition, compounds that mimic exercise have been studied in combination with exercise or fasting/food with drawal. This review addresses our current knowledge of the mechanisms that underlie the individual and combined effects of fasting/food withdrawal, endurance or resistance exercise, and their mimetics, in muscle vs. other organs in rodents and humans, and highlights which combinations may improve metabolic disorders. -Jaspers, R. T., Zillikens, M. C., Friesema, E. C. H., delli Paoli, G., Bloch, W., Uitterlinden, A. G., Goglia, F., Lanni, A., de Lange, P. Exercise, fasting, and mimetics: toward beneficial combinations.
2017
Obesity and type 2 diabetes are associated disorders that involve a multiplicity of tissues. Both fasting and physical exercise are known to counteract dyslipidemia/hyperglycemia. Skeletal muscle plays a key role in the control of blood glucose levels, and the metabolic changes and related signaling pathways in skeletal muscle induced by fasting overlap with those induced by exercise. The reduction of fat disposal has been shown to extend to the liver and to white and brown adipose tissue and to involve an increase in their metabolic activities. In recent years signal transduction pathways related to exercise and fasting/food withdrawal in muscle have been intensively studied, both in animals and in humans. Combining fasting/food withdrawal with exercise in animals as well as in humans causes changes unlike those seen during fasting/food withdrawal or exercise alone, which favor repair of muscle over autophagy. In addition, compounds that mimic exercise have been studied in combination with exercise or fasting/food withdrawal. This review addresses our current knowledge of the mechanisms that underlie the individual and combined effects of fasting/food withdrawal, endurance or resistance exercise, and their mimetics, in muscle vs other organs in rodents and humans, and highlights which combinations may improve metabolic disorders.-Jaspers, R. T., Zillikens, M. C., Friesema, E. C. H., delli Paoli, G., Bloch, W., Uitterlinden, A. G., Goglia, F., Lanni, A., de Lange, P. Exercise, fasting, and mimetics: toward beneficial combinations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/367770
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact