The mouse excisional dorsal full-thickness wound model with a silicon splint fixed on the skin has been widely used to mimic human wound healing. However, the method cannot accurately quantify dermal remodeling, since the initial point of epithelialization on the wound surface is unclear. To overcome this limitation, we have developed a novel mouse excisional wound model to assess the degree of epithelial extension and regeneration, using a plastic ring-shaped splint fixed beneath the surrounding epidermal tissue. At the end of the experiment, tissue samples were fixed in formalin, the splint was excised, and paraffin sections were prepared. Splint holes, corresponding to the prior location of the splint, were evident on the tissue cross-sections, and the epidermis above the holes was considered the initial excision site. The epidermal contraction and epithelial regeneration, as independent essential tissue alterations in wound healing, could be distinguishable and quantified. Compared with previous splint models, this method provides an accurate evaluation of epidermal processes in wound healing, and can be a platform to assess the effects of various wound healing factors. J. Cell. Physiol. 232: 1225–1232, 2017. © 2016 Wiley Periodicals, Inc.

The mouse excisional dorsal full-thickness wound model with a silicon splint fixed on the skin has been widely used to mimic human wound healing. However, the method cannot accurately quantify dermal remodeling, since the initial point of epithelialization on the wound surface is unclear. To overcome this limitation, we have developed a novel mouse excisional wound model to assess the degree of epithelial extension and regeneration, using a plastic ring-shaped splint fixed beneath the surrounding epidermal tissue. At the end of the experiment, tissue samples were fixed in formalin, the splint was excised, and paraffin sections were prepared. Splint holes, corresponding to the prior location of the splint, were evident on the tissue cross-sections, and the epidermis above the holes was considered the initial excision site. The epidermal contraction and epithelial regeneration, as independent essential tissue alterations in wound healing, could be distinguishable and quantified. Compared with previous splint models, this method provides an accurate evaluation of epidermal processes in wound healing, and can be a platform to assess the effects of various wound healing factors. J. Cell. Physiol. 232: 1225–1232, 2017. © 2016 Wiley Periodicals, Inc.

A Novel Skin Splint for Accurately Mapping Dermal Remodeling and Epithelialization During Wound Healing

FERRARO, Giuseppe;
2017

Abstract

The mouse excisional dorsal full-thickness wound model with a silicon splint fixed on the skin has been widely used to mimic human wound healing. However, the method cannot accurately quantify dermal remodeling, since the initial point of epithelialization on the wound surface is unclear. To overcome this limitation, we have developed a novel mouse excisional wound model to assess the degree of epithelial extension and regeneration, using a plastic ring-shaped splint fixed beneath the surrounding epidermal tissue. At the end of the experiment, tissue samples were fixed in formalin, the splint was excised, and paraffin sections were prepared. Splint holes, corresponding to the prior location of the splint, were evident on the tissue cross-sections, and the epidermis above the holes was considered the initial excision site. The epidermal contraction and epithelial regeneration, as independent essential tissue alterations in wound healing, could be distinguishable and quantified. Compared with previous splint models, this method provides an accurate evaluation of epidermal processes in wound healing, and can be a platform to assess the effects of various wound healing factors. J. Cell. Physiol. 232: 1225–1232, 2017. © 2016 Wiley Periodicals, Inc.
2017
The mouse excisional dorsal full-thickness wound model with a silicon splint fixed on the skin has been widely used to mimic human wound healing. However, the method cannot accurately quantify dermal remodeling, since the initial point of epithelialization on the wound surface is unclear. To overcome this limitation, we have developed a novel mouse excisional wound model to assess the degree of epithelial extension and regeneration, using a plastic ring-shaped splint fixed beneath the surrounding epidermal tissue. At the end of the experiment, tissue samples were fixed in formalin, the splint was excised, and paraffin sections were prepared. Splint holes, corresponding to the prior location of the splint, were evident on the tissue cross-sections, and the epidermis above the holes was considered the initial excision site. The epidermal contraction and epithelial regeneration, as independent essential tissue alterations in wound healing, could be distinguishable and quantified. Compared with previous splint models, this method provides an accurate evaluation of epidermal processes in wound healing, and can be a platform to assess the effects of various wound healing factors. J. Cell. Physiol. 232: 1225–1232, 2017. © 2016 Wiley Periodicals, Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/364560
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact