Aim Presenilin-1 (PS1), the main component of γ-secretase activity support a key role during Epithelial-Mesenchymal Transition (EMT) and chemoresistance acquisition by triggering a complex sequence of molecular events, including E-cadherin down-regulation. However, we hypothesize that EMT and chemoresistance should be deemed separate processes in HCT-8 colon cancer cells. Main methods HCT-8 and HCT-8FUres invasion was evaluated by trans-well assay. uPA activity was detected by zymography. Prostaglandin E2 levels were quantified using an ELISA kit. E-cadherin FL and CTF2, PS1, Notch1, Cyclin D1, COX2, SNAI1 and α-SMA expression were determined using Western blot technique. β-Catenin localization was observed by confocal microscopy. Cell apoptosis was evaluated by cytofluorimetric assay, and measurement of caspase-3 and cl-PARP. γ-Secretase activity was inhibited by DAPT, a γ-secretase inhibitor. Key findings Chemoresistant HCT-8 underwent EMT that can be efficiently reversed by inhibiting PS1 activity, leading thus to a normalization of mostly of the pivotal features showed by the invasive cancer phenotype. Indeed, we observed decreased SNAI1 and Notch 1 activation, altogether with reduced E-cadherin cleavage. Concomitantly, resistant HCT-8 invasiveness was almost completely abolished. However, such reversion was not followed by any increase in apoptotic rate, not by changes in E-cadherin levels. Indeed, despite HCT-8FUres underwent an undeniable EMT, full-length E-cadherin levels were found remarkably higher than those observed in wild HCT-8. Significance High E-cadherin concentration in presence of enhanced γ-secretase activity is incontestably a paradoxically result, highlighting that E-cadherin loss is not a pre-requisite for EMT. Additionally, EMT and chemoresistance acquisition in HCT-8 should be considered as distinct processes.

Paradoxical E-cadherin increase in 5FU-resistant colon cancer is unaffected during mesenchymal-epithelial reversion induced by γ-secretase inhibition

RICCI, Giulia;
2016

Abstract

Aim Presenilin-1 (PS1), the main component of γ-secretase activity support a key role during Epithelial-Mesenchymal Transition (EMT) and chemoresistance acquisition by triggering a complex sequence of molecular events, including E-cadherin down-regulation. However, we hypothesize that EMT and chemoresistance should be deemed separate processes in HCT-8 colon cancer cells. Main methods HCT-8 and HCT-8FUres invasion was evaluated by trans-well assay. uPA activity was detected by zymography. Prostaglandin E2 levels were quantified using an ELISA kit. E-cadherin FL and CTF2, PS1, Notch1, Cyclin D1, COX2, SNAI1 and α-SMA expression were determined using Western blot technique. β-Catenin localization was observed by confocal microscopy. Cell apoptosis was evaluated by cytofluorimetric assay, and measurement of caspase-3 and cl-PARP. γ-Secretase activity was inhibited by DAPT, a γ-secretase inhibitor. Key findings Chemoresistant HCT-8 underwent EMT that can be efficiently reversed by inhibiting PS1 activity, leading thus to a normalization of mostly of the pivotal features showed by the invasive cancer phenotype. Indeed, we observed decreased SNAI1 and Notch 1 activation, altogether with reduced E-cadherin cleavage. Concomitantly, resistant HCT-8 invasiveness was almost completely abolished. However, such reversion was not followed by any increase in apoptotic rate, not by changes in E-cadherin levels. Indeed, despite HCT-8FUres underwent an undeniable EMT, full-length E-cadherin levels were found remarkably higher than those observed in wild HCT-8. Significance High E-cadherin concentration in presence of enhanced γ-secretase activity is incontestably a paradoxically result, highlighting that E-cadherin loss is not a pre-requisite for EMT. Additionally, EMT and chemoresistance acquisition in HCT-8 should be considered as distinct processes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/364481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact