A method for PET mechanical properties enhancement by reactive blending with HBA/HNA Liquid Crystalline Polymers for in situ highly fibrillar composites preparation is presented. LCP/PET blends were reactive extruded in presence of Pyromellitic Di-Anhydride (PMDA) and then characterized by Differential Scanning Calorimetry, Thermally Stimulated Currents and tensile mechanical properties. The formation of specific macromolecular structures, where the PET, the LCP and the reactive additive are involved, has been hypothesized in the reactively extruded blends from TSC analysis evidences. The use of a reactive additive improved the matrix LCP compatibilization and adhesion as indicated by the SEM analysis and mechanical testing. Moderate amounts of LCP in the PET (0.5 and 5%) and small amounts of thermo-active and reactive compatibilizer in the blend (0.3%) were found to significantly improve LCP melt dispersion, melts shear transfer and LCP fibril formation and adhesion. Blends of PET and LCP containing the compatibilizer favored the formation of a well dispersed and homogeneous fibrillar phase whose particle size distribution did not show great coarsening and coalescence leading to significant elastic properties improvements from 0.8 for not compatibilized to 3.1 GPa for compatibilized 0.5% LCP loaded PET blends that was even higher than those expected from ordinary theoretical calculation. This unexpected improvement was probably due to the presence of two distinct phases’ supra-molecular structures involving PET-LCP and PMDA.
Liquid Crystalline Polymers Compatibilization and Adhesion Enhancement by Reactive Blending in Post-Consumers PET’s
AVERSA, Raffaella;APICELLA, Antonio
2016
Abstract
A method for PET mechanical properties enhancement by reactive blending with HBA/HNA Liquid Crystalline Polymers for in situ highly fibrillar composites preparation is presented. LCP/PET blends were reactive extruded in presence of Pyromellitic Di-Anhydride (PMDA) and then characterized by Differential Scanning Calorimetry, Thermally Stimulated Currents and tensile mechanical properties. The formation of specific macromolecular structures, where the PET, the LCP and the reactive additive are involved, has been hypothesized in the reactively extruded blends from TSC analysis evidences. The use of a reactive additive improved the matrix LCP compatibilization and adhesion as indicated by the SEM analysis and mechanical testing. Moderate amounts of LCP in the PET (0.5 and 5%) and small amounts of thermo-active and reactive compatibilizer in the blend (0.3%) were found to significantly improve LCP melt dispersion, melts shear transfer and LCP fibril formation and adhesion. Blends of PET and LCP containing the compatibilizer favored the formation of a well dispersed and homogeneous fibrillar phase whose particle size distribution did not show great coarsening and coalescence leading to significant elastic properties improvements from 0.8 for not compatibilized to 3.1 GPa for compatibilized 0.5% LCP loaded PET blends that was even higher than those expected from ordinary theoretical calculation. This unexpected improvement was probably due to the presence of two distinct phases’ supra-molecular structures involving PET-LCP and PMDA.File | Dimensione | Formato | |
---|---|---|---|
ajeassp.2016.530.539.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
2.02 MB
Formato
Adobe PDF
|
2.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.