Background: The word “stress” describes the status of the body affected by external or internal forces, or “stressors”, threatening to alter its dynamic balance or homeostasis. The adaptive changes which occur in reply to stressors are either behavioral or physical. Once a given threshold is surpassed, a systemic reaction takes place involving the “stress system” in the brain together with its peripheral components, the hypothalamic-pituitary-adrenal axis and autonomic sympathetic. Objectives: Stress induces an activation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis. The purpose of this study was to investigate whether the SNS and the HPA axis would show parallel or divergent stress response patterns in a session of first parachute jump. Patients and Methods: Activation of the SNS was evaluated by dosage of salivary alpha-amylase, galvanic skin responses, and heart rate in seven male novice parachutists. Activation of HPA axis was tested by dosage of cortisol. These variables were measured before and 1 minute and 90 minute after the jump. Results: All variables reached a peak at 1 minute post-jump. Salivary alpha-amylase, galvanic skin responses and heart rate did not return to basal value at 90 minutes post-jump, while cortisol returned to basal value at 90 minutes post-jump. Conclusions: This evidence indicates that parachute jumping is accompanied by a dissociation of SNS and HPA response patterns in novice parachutists, showing a slower recovery in sympathetic activity than in cortisol secretion.

Parachute jumping induces more sympathetic activation than cortisol secretion in first-time parachutists

CHIEFFI, Sergio;Messina, Antonietta;MONDA, Marcellino
2016

Abstract

Background: The word “stress” describes the status of the body affected by external or internal forces, or “stressors”, threatening to alter its dynamic balance or homeostasis. The adaptive changes which occur in reply to stressors are either behavioral or physical. Once a given threshold is surpassed, a systemic reaction takes place involving the “stress system” in the brain together with its peripheral components, the hypothalamic-pituitary-adrenal axis and autonomic sympathetic. Objectives: Stress induces an activation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis. The purpose of this study was to investigate whether the SNS and the HPA axis would show parallel or divergent stress response patterns in a session of first parachute jump. Patients and Methods: Activation of the SNS was evaluated by dosage of salivary alpha-amylase, galvanic skin responses, and heart rate in seven male novice parachutists. Activation of HPA axis was tested by dosage of cortisol. These variables were measured before and 1 minute and 90 minute after the jump. Results: All variables reached a peak at 1 minute post-jump. Salivary alpha-amylase, galvanic skin responses and heart rate did not return to basal value at 90 minutes post-jump, while cortisol returned to basal value at 90 minutes post-jump. Conclusions: This evidence indicates that parachute jumping is accompanied by a dissociation of SNS and HPA response patterns in novice parachutists, showing a slower recovery in sympathetic activity than in cortisol secretion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11591/356456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact