The rue (Ruta graveolens) copiousness in rural areas of the Campania Region based a thorough chemical and biological investigation aimed at exploring the seasonal variability of phenol constituents in rue leaves and its influence on their antioxidant, cytotoxic and anti-inflammatory capabilities. To this purpose, hydroalcoholic extracts were prepared from plant samples seasonally collected. LC-ESI-MS/MS techniques were employed to analyze qualitatively and quantitatively the seasonal rue phenol content, whereas different chemical antioxidant assays (by DPPH, ABTS, Fe(3+) RP, ORAC, and FCR methods) and XTT redox metabolic activity assay were performed to screen the seasonal phenol complex-related antioxidant and cytotoxic power. The ability of the rue leaf extracts to counteract cyclooxygenase-2 (COX-2) expression was also evaluated. Data obtained highlighted that the adopted extraction procedure markedly pauperized the furanocoumarin content in all the prepared rue extracts. Flavonol glycosides, along with the flavone acacetin and two sinapic acid derivatives were the main constituents of the spring harvest-derived extract, which exerted the highest antioxidant capability in cell-free systems and was capable to inhibit COX-2 synthesis by 44% comparably to dexamethasone, used as positive control. Data provide new insights for developing a proper management of rue plants for new safe industrial purposes in herbal medicine field.
The rue (Ruta graveolens) copiousness in rural areas of the Campania Region based a thorough chemical and biological investigation aimed at exploring the seasonal variability of phenol constituents in rue leaves and its influence on their antioxidant, cytotoxic and anti-inflammatory capabilities. To this purpose, hydroalcoholic extracts were prepared from plant samples seasonally collected. LC-ESI-MS/MS techniques were employed to analyze qualitatively and quantitatively the seasonal rue phenol content, whereas different chemical antioxidant assays (by DPPH, ABTS, Fe3+ RP, ORAC, and FCR methods) and XTT redox metabolic activity assay were performed to screen the seasonal phenol complex-related antioxidant and cytotoxic power. The ability of the rue leaf extracts to counteract cyclooxygenase-(COX-2) expression was also evaluated. Data obtained highlighted that the adopted extraction procedure markedly pauperized the furanocoumarin content in all the prepared rue extracts. Flavonol glycosides, along with the flavone acacetin and two sinapic acid derivatives were the main constituents of the spring harvest-derived extract, which exerted the highest antioxidant capability in cell-free systems and was capable to inhibit COX-synthesis by 44% comparably to dexamethasone, used as positive control. Data provide new insights for developing a proper management of rue plants for new safe industrial purposes in herbal medicine field.
Influence of harvest season on chemical composition and bioactivity of wild rue plant hydroalcoholic extracts
PACIFICO, Severina
;PICCOLELLA, Simona;FIORENTINO, Antonio;MONACO, Pietro
2016
Abstract
The rue (Ruta graveolens) copiousness in rural areas of the Campania Region based a thorough chemical and biological investigation aimed at exploring the seasonal variability of phenol constituents in rue leaves and its influence on their antioxidant, cytotoxic and anti-inflammatory capabilities. To this purpose, hydroalcoholic extracts were prepared from plant samples seasonally collected. LC-ESI-MS/MS techniques were employed to analyze qualitatively and quantitatively the seasonal rue phenol content, whereas different chemical antioxidant assays (by DPPH, ABTS, Fe3+ RP, ORAC, and FCR methods) and XTT redox metabolic activity assay were performed to screen the seasonal phenol complex-related antioxidant and cytotoxic power. The ability of the rue leaf extracts to counteract cyclooxygenase-(COX-2) expression was also evaluated. Data obtained highlighted that the adopted extraction procedure markedly pauperized the furanocoumarin content in all the prepared rue extracts. Flavonol glycosides, along with the flavone acacetin and two sinapic acid derivatives were the main constituents of the spring harvest-derived extract, which exerted the highest antioxidant capability in cell-free systems and was capable to inhibit COX-synthesis by 44% comparably to dexamethasone, used as positive control. Data provide new insights for developing a proper management of rue plants for new safe industrial purposes in herbal medicine field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.