The success of any tissue engineering implant relies upon prompt vascularization of the cellular construct and, hence, on the ability of the scaffold to broadcast specific activation of host endothelium and guide vessel ingrowth. Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulator, and if released in a controlled manner it may enhance and guide scaffold vascularization. Therefore, the aim of this work was to realize a scaffold with integrated depots able to release VEGF in a controlled rate and assess the ability of this scaffold to promote angiogenesis. VEGF-loaded poly(lactide-co-glycolide) (PLGA) microspheres were produced and included in a collagen scaffold. The release of VEGF from microspheres was tailored to be sustained over several weeks and occurred at a rate of ∼0.6 ng/day per mg of microspheres. It was found that collagen scaffolds bioactivated with VEGF-loaded microspheres strongly enhanced endothelial cell activation and vascular sprouting both in vitro and in vivo as compared with a collagen scaffold bioactivated with free VEGF. This report demonstrates that by finely tuning VEGF release rate within a polymeric scaffold, sprouting of angiogenic vessels can be guided within the scaffolds interstices as well as broadcasted from the host tissues. © 2009 Wiley Periodicals, Inc.

Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres

D'ANGELO, Ivana;
2010

Abstract

The success of any tissue engineering implant relies upon prompt vascularization of the cellular construct and, hence, on the ability of the scaffold to broadcast specific activation of host endothelium and guide vessel ingrowth. Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulator, and if released in a controlled manner it may enhance and guide scaffold vascularization. Therefore, the aim of this work was to realize a scaffold with integrated depots able to release VEGF in a controlled rate and assess the ability of this scaffold to promote angiogenesis. VEGF-loaded poly(lactide-co-glycolide) (PLGA) microspheres were produced and included in a collagen scaffold. The release of VEGF from microspheres was tailored to be sustained over several weeks and occurred at a rate of ∼0.6 ng/day per mg of microspheres. It was found that collagen scaffolds bioactivated with VEGF-loaded microspheres strongly enhanced endothelial cell activation and vascular sprouting both in vitro and in vivo as compared with a collagen scaffold bioactivated with free VEGF. This report demonstrates that by finely tuning VEGF release rate within a polymeric scaffold, sprouting of angiogenic vessels can be guided within the scaffolds interstices as well as broadcasted from the host tissues. © 2009 Wiley Periodicals, Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/330605
Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 64
social impact