The paper deals with the proposal of a procedure for the seismic retrofit of an existing prestressed concrete bridge. First, the seismic vulnerability assessment of the bridge was carried out. With this aim, a Nonlinear Static Procedure based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra was applied. According to the Performance-Based Earthquake Engineering principles, this procedure makes it possible to explicitly correlate the different performance levels to the varying intensities of seismic action. A seismic protection strategy based on the use of isolating system located between pier top and deck was subsequently applied. A design process consisting of an appropriate application of capacity-design principles and the Direct Displacement-Based Design approach was implemented. Finally, the seismic response of the bridge, modeled with an “exact” damping matrix, was evaluated through a linear time-history analysis involving a solution of the complete set of equilibrium equations at each time increment. The results obtained highlight the effectiveness of the seismic retrofit strategy

Seismic retrofit of a prestressed concrete road bridge

AVOSSA, Alberto Maria;MALANGONE, Pasquale
2012

Abstract

The paper deals with the proposal of a procedure for the seismic retrofit of an existing prestressed concrete bridge. First, the seismic vulnerability assessment of the bridge was carried out. With this aim, a Nonlinear Static Procedure based on the Capacity Spectrum Method as well as the Inelastic Demand Response Spectra was applied. According to the Performance-Based Earthquake Engineering principles, this procedure makes it possible to explicitly correlate the different performance levels to the varying intensities of seismic action. A seismic protection strategy based on the use of isolating system located between pier top and deck was subsequently applied. A design process consisting of an appropriate application of capacity-design principles and the Direct Displacement-Based Design approach was implemented. Finally, the seismic response of the bridge, modeled with an “exact” damping matrix, was evaluated through a linear time-history analysis involving a solution of the complete set of equilibrium equations at each time increment. The results obtained highlight the effectiveness of the seismic retrofit strategy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/320417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact