"Supervised classification of data affected by noise or error, with unknown probability distribution, is a challenging task. To this extend, we propose the Fuzzy Regularized Eigenvalue Classifier, based on a recent technique to classify data in two or more classes. We compare the execution time and accuracy of the classifier with other de facto standard methods. With the adoption of a novel membership function, the classifier is capable to produce more accurate models that well compare with results obtained by other methods, and fuzzy weighting functions, on benchmark datasets."
Titolo: | Fuzzy regularized generalized eigenvalue classifier with a novel membership function | |
Autori: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Abstract: | "Supervised classification of data affected by noise or error, with unknown probability distribution, is a challenging task. To this extend, we propose the Fuzzy Regularized Eigenvalue Classifier, based on a recent technique to classify data in two or more classes. We compare the execution time and accuracy of the classifier with other de facto standard methods. With the adoption of a novel membership function, the classifier is capable to produce more accurate models that well compare with results obtained by other methods, and fuzzy weighting functions, on benchmark datasets." | |
Handle: | http://hdl.handle.net/11591/320318 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.