Bisphosphonates (BPs) are synthetic analogues of naturally occurring pyrophosphate compounds. They are used in clinical practice to inhibit bone resorption in bone metastases, osteoporosis, and Paget's disease. BPs induce apoptosis because they can be metabolically incorporated into nonhydrolyzable analogues of adenosine triphosphate. In addition, the nitrogen-containing BPs (N-BPs), second-generation BPs, act by inhibiting farnesyl diphosphate (FPP) synthase, a key enzyme of the mevalonate pathway. These molecules are able to induce apoptosis of a number of cancer cells in vitro. Moreover, antiangiogenic effect of BPs has also been reported. However, despite these promising properties, BPs rapidly accumulate into the bone, thus hampering their use to treat extraskeletal tumors. Nanotechnologies can represent an opportunity to limit BP accumulation into the bone, thus increasing drug level in extraskeletal sites of the body. Thus, nanocarriers encapsulating BPs can be used to target macrophages, to reduce angiogenesis, and to directly kill cancer cell. Moreover, nanocarriers can be conjugated with BPs to specifically deliver anticancer agent to bone tumors. This paper describes, in the first part, the state-of-art on the BPs, and, in the following part, the main studies in which nanotechnologies have been proposed to investigate new indications for BPs in cancer therapy.

Bisphosphonates and cancer: what opportunities from nanotechnology?

MISSO, Gabriella;CARAGLIA, Michele
2013

Abstract

Bisphosphonates (BPs) are synthetic analogues of naturally occurring pyrophosphate compounds. They are used in clinical practice to inhibit bone resorption in bone metastases, osteoporosis, and Paget's disease. BPs induce apoptosis because they can be metabolically incorporated into nonhydrolyzable analogues of adenosine triphosphate. In addition, the nitrogen-containing BPs (N-BPs), second-generation BPs, act by inhibiting farnesyl diphosphate (FPP) synthase, a key enzyme of the mevalonate pathway. These molecules are able to induce apoptosis of a number of cancer cells in vitro. Moreover, antiangiogenic effect of BPs has also been reported. However, despite these promising properties, BPs rapidly accumulate into the bone, thus hampering their use to treat extraskeletal tumors. Nanotechnologies can represent an opportunity to limit BP accumulation into the bone, thus increasing drug level in extraskeletal sites of the body. Thus, nanocarriers encapsulating BPs can be used to target macrophages, to reduce angiogenesis, and to directly kill cancer cell. Moreover, nanocarriers can be conjugated with BPs to specifically deliver anticancer agent to bone tumors. This paper describes, in the first part, the state-of-art on the BPs, and, in the following part, the main studies in which nanotechnologies have been proposed to investigate new indications for BPs in cancer therapy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/235563
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact