Stiffness and elastic mechanical properties of the Zr44-Ti11-Cu10-Ni10-Be25 metal glass Alloy have been investigated by nano-indentation and Atomic Force Microscopy. Continuous stiffness measurements were carried out on the as received samples. Max indentation depth of 2000 Nm has been chosen. A 3D analysis of the indent traces has been performed using a Atomic Force Microscope: pile-up at the indentation edge was observed. These metallic glasses, therefore, although showing brittle like linear elastic behaviour up to failure are still capable of undergoing plastic shear flow at the nanoscale level that may potentially lead to high material ultimate properties. Elastic modulus of 116,2 ± 0,9 GPa has been found to be independent on indentation depth while a high hardness of 8,0 ± 0,8 GPa has been measured at low indentation depths (100 nm) that progressively reduces to a constant value of 7,0 ± 0,1 GPa at increasing depths (up to 2000 nm).

3d Analysis and Nano-indentation Mechanical Characterization of A Commercial Zr44-Ti11-Cu10-Ni10-Be25 Metal Glassy Alloy

AVERSA, Raffaella;APICELLA, Antonio
2015

Abstract

Stiffness and elastic mechanical properties of the Zr44-Ti11-Cu10-Ni10-Be25 metal glass Alloy have been investigated by nano-indentation and Atomic Force Microscopy. Continuous stiffness measurements were carried out on the as received samples. Max indentation depth of 2000 Nm has been chosen. A 3D analysis of the indent traces has been performed using a Atomic Force Microscope: pile-up at the indentation edge was observed. These metallic glasses, therefore, although showing brittle like linear elastic behaviour up to failure are still capable of undergoing plastic shear flow at the nanoscale level that may potentially lead to high material ultimate properties. Elastic modulus of 116,2 ± 0,9 GPa has been found to be independent on indentation depth while a high hardness of 8,0 ± 0,8 GPa has been measured at low indentation depths (100 nm) that progressively reduces to a constant value of 7,0 ± 0,1 GPa at increasing depths (up to 2000 nm).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/235043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact