Estrogen receptor α (ERα or ER) is the only target of breast cancer therapy using antiestrogens. However, about 50% of ER-expressing breast cancer is intrinsically refractory to the antihormone therapy and strategies to improve the therapeutic response are urgently needed. Dynamic ER phosphorylation and dephosphorylation play an important role in ER activity and antihormone response. Although more than 10 kinases participate in phosphorylating ER protein, phosphatases involved remain mostly unidentified. Here, we tested the hypothesis that the protein-tyrosine phosphatase H1 (PTPH1) may regulate ER tyrosine phosphorylation and thereby impact breast cancer antihormone sensitivity. Our results showed that PTPH1 dephosphorylates ER at Tyr537 in vitro and in breast cancer cells. Moreover, PTPH1 stimulates ER nuclear accumulation and increases breast cancer sensitivity to tamoxifen (TAM) and/or fulvestrant in cell culture and in a xenograft model. Further analysis revealed that PTPH1 depends on its catalytic activity to stimulate ER nuclear accumulation and to enhance breast cancer antihormone sensitivity. These studies thus identified PTPH1 as a novel ER phosphatase and further demonstrate a therapeutic potential of enhancing breast cancer sensitivity to antiestrogens through dephosphorylating ER by PTPH1.

Protein-tyrosine phosphatase H1 increases breast cancer sensitivity to antiestrogens by dephosphorylating estrogen receptor at Tyr537.

MIGLIACCIO, Antimo;
2013

Abstract

Estrogen receptor α (ERα or ER) is the only target of breast cancer therapy using antiestrogens. However, about 50% of ER-expressing breast cancer is intrinsically refractory to the antihormone therapy and strategies to improve the therapeutic response are urgently needed. Dynamic ER phosphorylation and dephosphorylation play an important role in ER activity and antihormone response. Although more than 10 kinases participate in phosphorylating ER protein, phosphatases involved remain mostly unidentified. Here, we tested the hypothesis that the protein-tyrosine phosphatase H1 (PTPH1) may regulate ER tyrosine phosphorylation and thereby impact breast cancer antihormone sensitivity. Our results showed that PTPH1 dephosphorylates ER at Tyr537 in vitro and in breast cancer cells. Moreover, PTPH1 stimulates ER nuclear accumulation and increases breast cancer sensitivity to tamoxifen (TAM) and/or fulvestrant in cell culture and in a xenograft model. Further analysis revealed that PTPH1 depends on its catalytic activity to stimulate ER nuclear accumulation and to enhance breast cancer antihormone sensitivity. These studies thus identified PTPH1 as a novel ER phosphatase and further demonstrate a therapeutic potential of enhancing breast cancer sensitivity to antiestrogens through dephosphorylating ER by PTPH1.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/233083
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact