VEGF receptors have been the target of intense research aimed to develop molecules able to inhibit or stimulate angiogenesis. Based on the x-ray structure of the complex placental growth factor-VEGF receptor 1D2, we designed a VEGF receptor-binding peptide reproducing the placental growth factor β-hairpin region Gln87-Val100 that is involved in receptor recognition. A conformational analysis showed that the designed peptide adopts the expected fold in pure water. Moreover, a combination of NMR interaction analysis and cell binding studies were used to demonstrate that the peptide targets VEGF receptors. The VEGF receptor 1D2-interacting residues were characterized at the molecular level, and they correspond to the residues recognizing the placental growth factor sequence Gln 87-Val100. Finally, the peptide biological activity was characterized in vitro and in vivo, and it showed a VEGF-like behavior. Indeed, the peptide activated VEGF-dependent intracellular pathways, induced endothelial cell proliferation and rescue from apoptosis, and promoted angiogenesis in vivo. This compound is one of the few peptides known with proangiogenic activity, which makes it a candidate for the development of a novel peptide-based drug for medical applications in therapeutic angiogenesis. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

β-Hairpin peptide that targets vascular endothelial growth factor (VEGF) receptors: Design, NMR characterization, and biological activity

FATTORUSSO, Roberto;
2011

Abstract

VEGF receptors have been the target of intense research aimed to develop molecules able to inhibit or stimulate angiogenesis. Based on the x-ray structure of the complex placental growth factor-VEGF receptor 1D2, we designed a VEGF receptor-binding peptide reproducing the placental growth factor β-hairpin region Gln87-Val100 that is involved in receptor recognition. A conformational analysis showed that the designed peptide adopts the expected fold in pure water. Moreover, a combination of NMR interaction analysis and cell binding studies were used to demonstrate that the peptide targets VEGF receptors. The VEGF receptor 1D2-interacting residues were characterized at the molecular level, and they correspond to the residues recognizing the placental growth factor sequence Gln 87-Val100. Finally, the peptide biological activity was characterized in vitro and in vivo, and it showed a VEGF-like behavior. Indeed, the peptide activated VEGF-dependent intracellular pathways, induced endothelial cell proliferation and rescue from apoptosis, and promoted angiogenesis in vivo. This compound is one of the few peptides known with proangiogenic activity, which makes it a candidate for the development of a novel peptide-based drug for medical applications in therapeutic angiogenesis. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/231465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 34
social impact