Due to its expression profile, triple-negative breast cancer (TNBC) is refractory to the most effective targeted therapies available for breast cancer treatment. Thus, cytotoxic chemotherapy represents the mainstay of treatment for early and metastatic TNBC. Therefore, it would be greatly beneficial to develop therapeutic approaches that cause TNBC cells to increase their sensitivity to cytotoxic drugs. Inorganic phosphate (Pi) is emerging as an important signaling molecule in many cell types. Interestingly, it has been shown that Pi greatly enhances the sensitivity of human osteosarcoma cell line (U2OS) to doxorubicin. We investigated the effects of Pi on the sensitivity of TNBC cells to doxorubicin and the underlying molecular mechanisms, carrying out flow cytometry-based assays of cell-cycle progression and cell death, MTT assays, direct cell number counting and immunoblotting experiments. We report that Pi inhibits the proliferation of triple-negative MDA-MB-231 breast cancer cells mainly by slowing down cell cycle progression. Interestingly, we found that Pi strongly increases doxorubicin-induced cytotoxicity in MDA-MB-231 cells by apoptosis induction, as revealed by a marked increase of sub-G1 population, Bcl-2 downregulation, caspase-3 activation and PARP cleavage. Remarkably, Pi/doxorubicin combination-induced cytotoxicity was dynamically accompanied by profound changes in Erk1/2 and Stat3 protein and phosphorylation levels. Altogether, our data enforce the evidence of Pi acting as a signaling molecule in MDA-MB-231 cells, capable of inhibiting Erk and Stat3 pathways and inducing sensitization to doxorubicin of TNBC cells, and suggest that targeting Pi levels at local sites might represent the rationale for developing effective and inexpensive strategies for improving triple-negative breast cancer therapy.

Inorganic Phosphate Prevents Erk1/2 and Stat3 Activation and Improves Sensitivity to Doxorubicin of MDA-MB-231 Breast Cancer Cells

Luigi Sapio;Emilio Chiosi;Annamaria Spina;Naviglio Silvio
2015

Abstract

Due to its expression profile, triple-negative breast cancer (TNBC) is refractory to the most effective targeted therapies available for breast cancer treatment. Thus, cytotoxic chemotherapy represents the mainstay of treatment for early and metastatic TNBC. Therefore, it would be greatly beneficial to develop therapeutic approaches that cause TNBC cells to increase their sensitivity to cytotoxic drugs. Inorganic phosphate (Pi) is emerging as an important signaling molecule in many cell types. Interestingly, it has been shown that Pi greatly enhances the sensitivity of human osteosarcoma cell line (U2OS) to doxorubicin. We investigated the effects of Pi on the sensitivity of TNBC cells to doxorubicin and the underlying molecular mechanisms, carrying out flow cytometry-based assays of cell-cycle progression and cell death, MTT assays, direct cell number counting and immunoblotting experiments. We report that Pi inhibits the proliferation of triple-negative MDA-MB-231 breast cancer cells mainly by slowing down cell cycle progression. Interestingly, we found that Pi strongly increases doxorubicin-induced cytotoxicity in MDA-MB-231 cells by apoptosis induction, as revealed by a marked increase of sub-G1 population, Bcl-2 downregulation, caspase-3 activation and PARP cleavage. Remarkably, Pi/doxorubicin combination-induced cytotoxicity was dynamically accompanied by profound changes in Erk1/2 and Stat3 protein and phosphorylation levels. Altogether, our data enforce the evidence of Pi acting as a signaling molecule in MDA-MB-231 cells, capable of inhibiting Erk and Stat3 pathways and inducing sensitization to doxorubicin of TNBC cells, and suggest that targeting Pi levels at local sites might represent the rationale for developing effective and inexpensive strategies for improving triple-negative breast cancer therapy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/231191
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact