Escherichia coli K4 is one of the bacteria expressing a surface polysaccharide, indicated as capsular polysaccharide (K-antigen), showing a chemical structure that resembles that of metabolites commonly used in pharmaceutical applications. In this study we provide evidence that homologous overexpression of the chondroitin polymerase, encoded by the kfoC gene, acts on a potential bottleneck for production of capsular polysaccharide, and increases productivity by 100%. However, we also demonstrate that genetic engineering and scale-up of the production process with E. coli K4 is not straight forward due to genetic instability of recombinant strains, partly overcome by multiple additions of antibiotic throughout fermentation that prove to increase plasmid maintenance inside the cells. A lower resistance to the antibiotic was nevertheless highlighted in the stationary phase suggesting other concomitant causes for plasmid instability. The latter might partly be related to a newly discovered endogenous mobile element that we indicate as pK4EC05. Sequencing and analysis of a 1900 bp fragment of pK4EC05 shows a high percentage of sequence similarity to large conjugative plasmids isolated from Shigella, Salmonella and E. coli strains.

Improved fructosylated chondroitin production by kfoC overexpression in E. coli K4

CIMINI, Donatella;DE ROSA, Mario;RESTAINO, Odile Francesca;SCHIRALDI, Chiara
2010

Abstract

Escherichia coli K4 is one of the bacteria expressing a surface polysaccharide, indicated as capsular polysaccharide (K-antigen), showing a chemical structure that resembles that of metabolites commonly used in pharmaceutical applications. In this study we provide evidence that homologous overexpression of the chondroitin polymerase, encoded by the kfoC gene, acts on a potential bottleneck for production of capsular polysaccharide, and increases productivity by 100%. However, we also demonstrate that genetic engineering and scale-up of the production process with E. coli K4 is not straight forward due to genetic instability of recombinant strains, partly overcome by multiple additions of antibiotic throughout fermentation that prove to increase plasmid maintenance inside the cells. A lower resistance to the antibiotic was nevertheless highlighted in the stationary phase suggesting other concomitant causes for plasmid instability. The latter might partly be related to a newly discovered endogenous mobile element that we indicate as pK4EC05. Sequencing and analysis of a 1900 bp fragment of pK4EC05 shows a high percentage of sequence similarity to large conjugative plasmids isolated from Shigella, Salmonella and E. coli strains.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/230846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact