RNA interference (RNAi) is a post-transcriptional gene-silencing process that occurs in many eukaryotic organisms upon intracellular exposure to double-stranded RNA. Argonaute 2 (Ago2) protein is the catalytic engine of mammalian RNAi. It contains a PIWI domain that is structurally related to RNases H and possibly shares with them a two-metalion catalysis mechanism. Here we describe the expression in E. coli of mouse Ago2 and testing of its enzymatic activity in a RISC assay, i.e., for the ability to cleave a target RNA in a single position specified by a complementary small interfering RNA (siRNA). The results show that the enzyme can load the siRNA and cleave the complementary RNA in absence of other cellular factors, as described for human Ago2. It was also found that mutation of Arg669, a residue previously proposed to be involved in substrate and/or B metal ion binding, doesn't affect the enzymatic activity, suggesting that this residue doesn't belong to the active site. © 2010 by the authors; licensee Molecular Diversity Preservation International.

Bacterial Expression of Mouse Argonaute 2 for Functional and Mutational Studies

POTENZA, Nicoletta;RUSSO, Aniello
2010

Abstract

RNA interference (RNAi) is a post-transcriptional gene-silencing process that occurs in many eukaryotic organisms upon intracellular exposure to double-stranded RNA. Argonaute 2 (Ago2) protein is the catalytic engine of mammalian RNAi. It contains a PIWI domain that is structurally related to RNases H and possibly shares with them a two-metalion catalysis mechanism. Here we describe the expression in E. coli of mouse Ago2 and testing of its enzymatic activity in a RISC assay, i.e., for the ability to cleave a target RNA in a single position specified by a complementary small interfering RNA (siRNA). The results show that the enzyme can load the siRNA and cleave the complementary RNA in absence of other cellular factors, as described for human Ago2. It was also found that mutation of Arg669, a residue previously proposed to be involved in substrate and/or B metal ion binding, doesn't affect the enzymatic activity, suggesting that this residue doesn't belong to the active site. © 2010 by the authors; licensee Molecular Diversity Preservation International.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/228869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact