BACKGROUND AND OBJECTIVES: Interferon alpha2a (IFNalpha2a) mediates important antiviral, antiproliferative and immunomodulatory responses and is employed in the treatment of human diseases, including chronic myelogenous leukemia. Here, we report the IFNalpha2a-dependent expression profiles of three malignant cell lines derived from liver, lymphocytes and muscle. DESIGN AND METHODS: The experiments were performed in the presence of cycloheximide, thus our results exclusively reflect direct transcriptional modulation. The short exposure time i.e. 5 hours evidences only the early events, excluding the effects of complex phenotypic changes on the expression. RESULTS: Our findings indicate that IFNalpha2a rapidly up-regulates the expression of STAT1, STAT2 and ISGF3G genes. This activity should result in the amplification of the cellular response to the cytokine. Moreover, IFNalpha2a directly modulates the expression of: (i) important transcriptional factors, e.g. IRF1 and IRF7 which control pivotal cellular events, and (ii) enzymes involved in the IFNalpha2a-dependent antiviral and apoptotic response. Interestingly, we showed that the cytokine induces transcriptional expression of Sjögren's syndrome antigen A1, a protein involved in several autoimmune diseases. INTERPRETATION AND CONCLUSIONS: The observed changes induced by IFNalpha2a could be related to the development of autoimmune syndromes observed during IFNalpha2a treatment. A number of genes transcriptionally regulated by the cytokine have been identified for the first time; these might represent additional effectors of IFNalpha2a activity.

Genes transcriptionally modulated by interferon alpha2a correlate with the cytokine activity

BORRIELLO, Adriana;DELLA RAGIONE, Fulvio
2004

Abstract

BACKGROUND AND OBJECTIVES: Interferon alpha2a (IFNalpha2a) mediates important antiviral, antiproliferative and immunomodulatory responses and is employed in the treatment of human diseases, including chronic myelogenous leukemia. Here, we report the IFNalpha2a-dependent expression profiles of three malignant cell lines derived from liver, lymphocytes and muscle. DESIGN AND METHODS: The experiments were performed in the presence of cycloheximide, thus our results exclusively reflect direct transcriptional modulation. The short exposure time i.e. 5 hours evidences only the early events, excluding the effects of complex phenotypic changes on the expression. RESULTS: Our findings indicate that IFNalpha2a rapidly up-regulates the expression of STAT1, STAT2 and ISGF3G genes. This activity should result in the amplification of the cellular response to the cytokine. Moreover, IFNalpha2a directly modulates the expression of: (i) important transcriptional factors, e.g. IRF1 and IRF7 which control pivotal cellular events, and (ii) enzymes involved in the IFNalpha2a-dependent antiviral and apoptotic response. Interestingly, we showed that the cytokine induces transcriptional expression of Sjögren's syndrome antigen A1, a protein involved in several autoimmune diseases. INTERPRETATION AND CONCLUSIONS: The observed changes induced by IFNalpha2a could be related to the development of autoimmune syndromes observed during IFNalpha2a treatment. A number of genes transcriptionally regulated by the cytokine have been identified for the first time; these might represent additional effectors of IFNalpha2a activity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/228685
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact