Chronic myelogenous leukemia (CML) is characterized by the expression of BCR-ABL tyrosine kinase, which results in increased cell proliferation and inhibition of apoptosis. In this study, we show that BCR-ABL-positive CML cell lines treated with imatinib (STI571) undergo G₁ cell cycle arrest associated with the accumulation of p57(Kip)², a cyclin-dependent kinase inhibitor (CKI). Interestingly, p57(Kip)² increase precedes the reported STI571-dependent upregulation of p27(Kip)¹. A number of complementary approaches allow the demonstration that p57(Kip)² buildup is due to the transcriptional activation of CDKN1C, the p57(Kip)²-encoding gene, while neither p57(Kip)² half-life elongation nor its cell relocalization were observed. We also identified a heretofore undescribed pattern of p57(Kip)² phosphorylated isoforms which, however, did not change in response to STI571 cell treatment. The imatinib-dependent p57(Kip)² upregulation occurs only in STI571-responsive cells, while the CKI accumulation was not evidenced in an imatinib-resistant clone. Nilotinib and dasatinib (second-generation BCR-ABL inhibitors), at concentrations comparable to those used in therapy, increase the CKI but do not affect p27(Kip)¹ level. Finally, CD34(+) cells from CML patients display a clear imatinib-dependent p57(Kip)² upregulation, which was not observed in CD34(+) cells from control subjects. In conclusion, our study points to p57(Kip)² as a novel and precocious effector of BCR-ABL targeting drugs.

p57Kip2 is a downstream effector of BCR-ABL kinase inhibitors in chronic myelogenous leukemia cells

BORRIELLO, Adriana;Bencivenga D;OLIVA, Adriana;PERROTTA, Silverio;DELLA RAGIONE, Fulvio
2011

Abstract

Chronic myelogenous leukemia (CML) is characterized by the expression of BCR-ABL tyrosine kinase, which results in increased cell proliferation and inhibition of apoptosis. In this study, we show that BCR-ABL-positive CML cell lines treated with imatinib (STI571) undergo G₁ cell cycle arrest associated with the accumulation of p57(Kip)², a cyclin-dependent kinase inhibitor (CKI). Interestingly, p57(Kip)² increase precedes the reported STI571-dependent upregulation of p27(Kip)¹. A number of complementary approaches allow the demonstration that p57(Kip)² buildup is due to the transcriptional activation of CDKN1C, the p57(Kip)²-encoding gene, while neither p57(Kip)² half-life elongation nor its cell relocalization were observed. We also identified a heretofore undescribed pattern of p57(Kip)² phosphorylated isoforms which, however, did not change in response to STI571 cell treatment. The imatinib-dependent p57(Kip)² upregulation occurs only in STI571-responsive cells, while the CKI accumulation was not evidenced in an imatinib-resistant clone. Nilotinib and dasatinib (second-generation BCR-ABL inhibitors), at concentrations comparable to those used in therapy, increase the CKI but do not affect p27(Kip)¹ level. Finally, CD34(+) cells from CML patients display a clear imatinib-dependent p57(Kip)² upregulation, which was not observed in CD34(+) cells from control subjects. In conclusion, our study points to p57(Kip)² as a novel and precocious effector of BCR-ABL targeting drugs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/228416
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact