A hydroxytyrosol triacetyl derivative was very efficiently produced as a highly pure stabilized antioxidant compound by a short treatment of olive mill waste water (OMWW) organic extracts, rich in hydroxytyrosol, with an acetylating mixture composed of HClO4-SiO2 and Ac2O (Chakborti and Gulhane reaction), in mild and safe conditions. A successive single step of middle pressure liquid chromatography (MPLC) purification of the reaction product was performed, with an overall yield of 35.6%. (This process, including both the Chakborti and Gulhane reaction and the MPLC purification, is protected by an international patent under PCT/IT2005/000781.) The o-diphenol triacetyl derivative was also produced by direct reaction of hydroxytyrosol, previously purified by MPLC, with HClO4-SiO2 and Ac2O, with an overall yield of 29.5%. A further procedure for the production of the hydroxytyrosol triacetyl derivative was consistent with the direct treatment of raw OMWW with the acetylating agent and a single step of MPLC purification, with an overall yield of 27.6%. The purified natural triacetylhydroxytyrosol confirmed the same strong protective effects against the oxidative stress in human cells as the corresponding synthetic compound, likely because of the biochemical activation of the acetyl derivative into the active parent hydroxytyrosol by esterases. We therefore propose the utilization of OMWW for recovering hydroxytyrosol as a natural antioxidant in a chemically stabilized form, with a good yield, which can be potentially used as a nontoxic functional component in nutritional, pharmaceutical, and cosmetic preparations.

Production of triacetylhydroxytyrosol from olive mill waste waters for use as stabilized bioantioxidant.

MANNA, Caterina
2006

Abstract

A hydroxytyrosol triacetyl derivative was very efficiently produced as a highly pure stabilized antioxidant compound by a short treatment of olive mill waste water (OMWW) organic extracts, rich in hydroxytyrosol, with an acetylating mixture composed of HClO4-SiO2 and Ac2O (Chakborti and Gulhane reaction), in mild and safe conditions. A successive single step of middle pressure liquid chromatography (MPLC) purification of the reaction product was performed, with an overall yield of 35.6%. (This process, including both the Chakborti and Gulhane reaction and the MPLC purification, is protected by an international patent under PCT/IT2005/000781.) The o-diphenol triacetyl derivative was also produced by direct reaction of hydroxytyrosol, previously purified by MPLC, with HClO4-SiO2 and Ac2O, with an overall yield of 29.5%. A further procedure for the production of the hydroxytyrosol triacetyl derivative was consistent with the direct treatment of raw OMWW with the acetylating agent and a single step of MPLC purification, with an overall yield of 27.6%. The purified natural triacetylhydroxytyrosol confirmed the same strong protective effects against the oxidative stress in human cells as the corresponding synthetic compound, likely because of the biochemical activation of the acetyl derivative into the active parent hydroxytyrosol by esterases. We therefore propose the utilization of OMWW for recovering hydroxytyrosol as a natural antioxidant in a chemically stabilized form, with a good yield, which can be potentially used as a nontoxic functional component in nutritional, pharmaceutical, and cosmetic preparations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/228294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact