We study the nonexistence of global solutions for equations and inequalities of the following type $\partial_{tt}u\ge\Delta A(x,t,u)+ B(x,t,u)$ on $\bbfR^{N+1}_+$ with nonlinearity $A$ and $B$ of the form $A(x,t,u)=\rho_1(x,t)|u|^p$, $B(x,t,u) =\rho_2(x,t)|u|^q$. We also study the nonexistence for some more general inequalities of second-order but without any assumption about the type of operator. The method relies on a suitable choice of test functions, rescaling techniques and a dimensional analysis.

Blow-up results for some nonlinear hyperbolic problems

PICCIRILLO, Anna Maria;
2005

Abstract

We study the nonexistence of global solutions for equations and inequalities of the following type $\partial_{tt}u\ge\Delta A(x,t,u)+ B(x,t,u)$ on $\bbfR^{N+1}_+$ with nonlinearity $A$ and $B$ of the form $A(x,t,u)=\rho_1(x,t)|u|^p$, $B(x,t,u) =\rho_2(x,t)|u|^q$. We also study the nonexistence for some more general inequalities of second-order but without any assumption about the type of operator. The method relies on a suitable choice of test functions, rescaling techniques and a dimensional analysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11591/228195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact